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ABSTRACT: Federated Learning (FL) enables joint training over distributed devices without data exchange but is
highly vulnerable to attacks by adversaries in the form of model poisoning and malicious update injection. This work
proposes Secured-FL, a blockchain-based defensive framework that combines smart contract-based authentication,
clustering-driven outlier elimination, and dynamic threshold adjustment to defend against adversarial attacks. The
framework was implemented on a private Ethereum network with a Proof-of-Authority consensus algorithm to ensure
tamper-resistant and auditable model updates. Large-scale simulation on the Cyber Data dataset, under up to 50%
malicious client settings, demonstrates Secured-FL achieves 6%-12% higher accuracy, 9%-15% lower latency, and
approximately 14% less computational expense compared to the PPSS benchmark framework. Additional tests, includ-
ing confusion matrices, ROC and Precision-Recall curves, and ablation tests, confirm the interpretability and robustness
of the defense. Tests for scalability also show consistent performance up to 500 clients, affirming appropriateness
to reasonably large deployments. These results make Secured-FL a feasible, adversarially resilient FL paradigm with
promising potential for application in smart cities, medicine, and other mission-critical IoT deployments.

KEYWORDS: Federated learning (FL); blockchain; FL based privacy; model defense; FL model security; ethereum;
smart contract

1 Introduction

Federated Learning (FL) is a new architecture enabling collaborative training of deep learning models
at scale, ranging from hundreds to millions [1,2]. In the conventional FL setting, a global model is overseen
by a central server and managed through updates in coordination from dispersed clients [3,4]. Each client
trains with private data locally, and model updates in isolation are shared, preserving data privacy [5]. This
paradigm of distributed design enhances performance by applying distributed computation and minimizes
raw data exposure risk.

While privacy-preserving, FL is very vulnerable to adversarial attacks, and particularly model poisoning
attacks [6-8]. Adversarial attackers can corrupt model updates while training, undermining the accuracy and
robustness of the aggregated global model [5]. Countermeasures against poisoning in the shape of Byzantine-
robust aggregation methods [2,9-13] have been proposed, but most assume Independent and Identically
Distributed (IID) data—a impossible case in actual deployments [14-16].
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Recent research [5,17,18] has attempted to overcome these limitations by combining optimization
techniques, reinforcement learning-based client selection, and latency-aware training [19-21]. Such methods
improve performance but often result in trade-offs such as longer convergence, higher computational
complexity, or loss of training accuracy [22-24]. To avoid such limitations, decentralized FL systems [25-27]
have been developed that allow model updates to be shared without relying on a central server. However,
decentralized FL has communication efficiency issues if there is no bidirectional trust or connectivity [28-31].

Blockchain integration was viewed as a promising way to enhance FL by ensuring immutability, tamper-
resistance, and distributed trust [32-34]. Its cryptography-based architecture ensures open transaction
logging and auditability and thus is well suited for use in applications such as intelligent transportation,
healthcare, and security in IoT [35,36]. Current work has employed blockchain-FL integration to counter
data forgery, enhance privacy based on differential privacy (DP) and generative adversarial networks, and
reduce communication overhead [37-39]. The systems are still beset by scalability, bad authentication, and

inadequate defense against adversarial model tampering.

Problem Statement: Federated Learning has been a practical paradigm for decentralized model training
but without sharing raw data. FL, while having the promise, is extremely susceptible to model poisoning,
model inversion, and membership inference attacks that compromise both convergence stability as well
as privacy. Existing defenses—e.g., Byzantine-resilient aggregation and privacy-preserving frameworks—
either assume IID client information, apply static trust thresholds, or fail to counter dynamic adversarial
behaviors present in real-world implementations. In addition, most blockchain-based FL solutions offer poor
guarantees for member authentication and update accountability. This weakness promotes the design of
a comprehensive defense that can ensure tamper-resistance, transparent member authentication, dynamic
outlier identification, and adaptive trust thresholds all at once. The Secured-FL architecture addresses these
shortcomings through the use of blockchain’s immutability and decentralization, and adaptive clustering-
based defenses to secure FL against sophisticated adversarial attacks.

The following are the primary contributions of this paper:

1. The Secured-FL model employs a decentralized learning environment on a private Ethereum blockchain
network, fostering collaborative learning among diverse data owners. Additionally, it integrates cross-
device Federated Learning, which includes mobile and IoT devices managed by Cluster Heads that
possess advanced computing capabilities. The use of blockchain technology enables the registration,
authentication, and safe storage of client and Cluster Head data, guaranteeing transparency and
resistance to tampering.

2. The model involves an initialization and registration steps using smart contracts, guaranteeing safe
documentation on the private blockchain ledger. The authentication step uses smart contracts to validate
the authenticity of clients and issue submission tokens.

3. 'The security mechanism for model updates uses clustering and two-phase outlier elimination
techniques to detect and mitigate malicious updates, therefore strengthening resilience against adver-
sarial attacks.

4. 'The model also incorporates dynamic threshold radius adaptation and strategic confinement of
malicious updates to increase the likelihood of their selection by the defense algorithm.

5. Secured-FL model was assessed against a benchmark model (PPSS) using different proportions of
malicious clients. The results exhibited enhanced convergence, reduced final losses, increased accuracy,
precision, and recall.

6. 'The Secured-FL model demonstrated superior performance compared to PPSS, even when faced with
50% of malicious clients. The model also shown efficacy in decreasing false positives, maintaining
accuracy, and showcasing memory efficiency.
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7. An analysis was conducted on the computational costs and execution delay of both models across
250 training iterations. Secured-FL demonstrated markedly reduced computing costs in comparison to
PPSS, making it a compelling choice for low latency applications.

The subsequent sections of this work are structured in the following manner. The related studies are
provided in Section 2. Section 3 provides a detailed discussion of the system model. The Section 4 introduced
the proposed defensive architecture for FL. model updates. The security analysis was presented in Section 5.
The Implementation and results were discussed in Section 6. Section 7 presents the discussions on the
proposed model. In conclusion, Section 8 is the last segment of this work.

2 Review of the Related Studies

Federated Learning (FL) enables collaborative machine learning across distributed clients without
divulging raw data but is highly vulnerable to adversarial attacks in the form of model poisoning, model
inversion, and membership inference attacks [5-8]. In order to thwart such attacks, Byzantine-resilient
aggregation methods [9-13] and anomaly detection defenses [14-16] have been proposed. While these
methods provide partial robustness, they typically assume IID data, which is rarely the case for real-world
heterogeneous deployments.

Many recent works such as [17,18] and optimization-based approaches such as [19-21] have attempted
to mitigate these issues using reinforcement learning-based client selection and latency-aware training.
These methods, however, incur computational overhead, slow down convergence, or lose accuracy [22-24].
To circumvent these issues, decentralized federated learning techniques have been proposed [25-27]. For
example, Shiranthika et al. [29] spoke about decentralized learning in healthcare, showing the feasibility of
FL without a central server but also the susceptibility to adversarial manipulation. Similarly, Zarour et al. [31]
highlighted the issue of data integrity in digital health systems, confirming the need for blockchain-based
immutability and tamper resistance. Together, these writings show that FL in critical fields requires both
strong defense against adversarial manipulation and privacy protection.

Healthcare is particularly exposed to adversarial attacks. Hemdan and Sayed [40] showed how
blockchain and FL can be applied to smart healthcare digital twins, with a special emphasis on the need for
explainable and privacy-preserving models. At the application level, Nasir et al. [41] proposed FL for fetal
health classification using biosignal cardiotocography, and Asif et al. [42] addressed FL in ECG arrhythmia
detection. These works highlight that adversarial attacks in FL could have life-threatening implications,
thereby motivating stronger, domain-agnostic defenses such as Secured-FL.

Beyond healthcare, FL has been widely applied in other IoT-based applications. Kumar et al. (a) [43]
proposed PEFL, a privacy-encoding FL framework for agriculture, and Kumar et al. (b) [44] introduced SP2F
for UAV-based agricultural systems. Both echo FLs expansion to resource-limited, distributed environments,
where security holes still remain essential. Xiong and Li [45] also addressed consensus-level privacy
preservation, providing further visibility into communication security but without specifically refuting
poisoning-based adversarial attacks. These examples illustrate that FL vulnerabilities are not limited to
healthcare, spreading to agriculture, UAV, and industrial IoT systems.

The financial sector has also adopted FL, typically alongside explainability requirements. Aljunaid
et al. [46] proposed an explainable Al-based FL framework for fraud detection, claiming that finance
also needs transparency alongside adversarial robustness. This inter-sectoral evidence demonstrates that
adversarial resistance in FL is not a niche healthcare concern, but a multi-domain necessity across medicine,
smart cities, agriculture, UAV systems, and finance.
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Blockchain has therefore been an auspicious enabler for FL trust, accountability, and tamper resis-
tance improvement [32-36]. Hybrid blockchain-FL systems have been envisioned for intrusion detection,
telemedicine, and IoT security [37-39]. Most of the existing solutions, however, continue to experience
limitations such as static trust thresholds, scalability bottlenecks, or partial defense against poisoning. For
instance, Alruwaili et al. [47] employed static trust-based defenses, and Li et al. [48] employed clustering
without adapting dynamically. Recent explainability-based FL frameworks [48-50] are interpretable but

exclude poisoning defenses.

In brief, the literature demonstrates (i) application-driven utilization of FL in healthcare [29,31,40-42],
agriculture and UAV's [43,44], and finance [46]; (ii) methodological advances in the sense of consensus and
privacy [44]; and (iii) partial blockchain-FL combinations for security [33-35]. Yet, they leave out essential
gaps in dynamic adversarial defense, large-scale authentication, and cross-domain robustness. The proposed
Secured-FL framework bridges these gaps by combining blockchain immutability, smart contract-based
authentication, and clustering-based outlier removal with adaptive thresholding, providing an end-to-end
solution for federated learning adversarial attacks.

Table 1 summarizes and compares some of the most recent related works with the proposed Secured-FL
model review based on the defense strategy, convergence speed, communication cost and the limitations.

Table 1: Comparative analysis of recent blockchain-FL approaches vs. Secured-FL

Work Defense strategy Convergence Communication Limitations
speed cost
Alruwaili etal. ~ Static trust threshold for =~ Moderate High (dueto  Fails against adaptive
(2025) [47] poisoned updates repeated adversaries
consensus
checks)
Li et al. Outlier removal via Slow under Moderate ~ No dynamic adaptation;
(2024) [48] k-means non-IID limited scalability
Almaazmi et al. Explainable FL for Fast Low Focused on
(2025) [49] vehicular energy interpretability, not
adversarial defense
Alshkeilietal. ~ XAlI-driven predictive Moderate Moderate Privacy preserved, but
(2025) [50] maintenance adversarial poisoning
unaddressed
Khan et al. FL in energy grids with Moderate High Secure aggregation only,
(2025) [51] XAI limited scalability
Secured-FL Blockchain + smart  Fast (improved Low (efficient Tested on private
contract authentication + convergence Proof of Ethereum; scalability
dynamic clustering & under 50% Authority beyond 500 nodes
outlier elimination adversaries) (PoA) + remains future work
reduced re-

transmissions)
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3 Proposed Secured-FL Framework and System Model

The system is designed as a machine learning environment that operates inside a private Ethereum
blockchain network as depicted in Fig. 1. Its purpose is to enable collaborative learning of a global machine
learning model among many data owners, often known as clients. Importantly, this collaborative learning is
achieved without the need for the exchange of private data between the clients.
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Figure 1: Proposed Secured-FL system model and framework. Clients (IoT devices or mobiles) are grouped together,
with each being governed by a Cluster Head (CH) of higher computation power. Model training locally is done by clients
and forwarded to their corresponding CH. Authentication by smart contract issuing a particular token is necessary
for every client before submission. The CH aggregates updates in the cluster and forwards them to the server. All
registration records, authentication tokens, and update transactions are stored on the private Ethereum blockchain
ledger, with a promise of immutability and transparency. The Proof of Authority (PoA) consensus algorithm efficiently
confirms and commits updates without tampering and scales accordingly. This integration of blockchain with FL
provides decentralized accountability, verifiable audit trails, and interference against malicious update manipulation

Based on the concept of cross-device FL, the clients mostly include a multitude of mobile or IoT
devices, whereas only a fraction of these devices actively participate in each training iteration. The clientele
is structured into clusters, with each cluster being represented by a Cluster Head (CH) that has high
computing capabilities.

The CH consolidates any model changes it receives inside its cluster prior to transmitting them to the
server for further processing. The server, which fulfills the role of the network administrator, employs a
smart contract to register all clients and CHs during the initial stage. Additionally, the smart contract is used
for authenticating clients and CHs throughout the submission of model updates and aggregation processes.
Every CH that is registered in the network, as well as the server, is assigned a distinct Ethereum Account.
These accounts are identifiable by unique Ethereum Addresses (EAs) inside the network. Each individual
client that is registered is linked to a distinct CH and is also identifiable by a unique identification value (IV).
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The private Ethereum blockchain ledger stores the details of all registered clients, as well as the list of
CHs and communication transactions. The blockchain technology facilitates the creation of a decentralized
ledger system, whereby each model modification is recorded as a visible and unchangeable transaction. The
ledger, which is disseminated among all participants, serves the purpose of ensuring that the whole history
of model modifications can be verified and traced.

Attacker Model

This section outlines the progression of our assumed adversarial attacks model in the context of FL. In
this attack scenario, we examine a realistic case when the adversary had limited information on the algorithm
used by the defense. This aspect has significant relevance since, in several cases, the aggregation technique
used in FL systems remains undisclosed to the public. Furthermore, it is presumed that the adversary has
access to knowledge on the benign updates used in our offensive approach. In situations when information
on the benign updates is not accessible, the adversary may approximate them by engaging in a process of
clean training on local datasets that have been compromised by the adversary. The attacker is assumed to
have a dataset with labeled information, either publicly available or amalgamated from compromised clients.
Similarly, it is presumed that the attacker cannot compromise the blockchain network.

Suppose that the global model output, f(x; o) refers to the outcome of the model when given input x and
parameter o. The constructed harmful updates for the controlled clients are designated as B(j¢[,];> where it
is assumed, without loss of generality, that the first m clients are malicious. The global model weights from the
previous iteration are denoted as w, whereas n represents the total count of chosen clients in each iteration.
If L represents the loss function, which serves to quantify the discrepancy between the model’s output f(x)
and the actual label y; then the attacker’s objective is to compromise the accuracy of the global model by
solving the following optimization problem thereby injecting misleading updates during aggregation:

Lﬁ{he[m]} (f (x”‘**)’y) 1)

where w* =0 + f*(Bioe[m]} Y Bive[m+n]})> and f* is the non-differentiable aggregation function. This
optimization formalizes the poisoning objective: adversaries select update vectors that maximize global loss.
The assumption of blockchain immutability is reasonable in a permissioned (private) PoA setting which is
considered in this work but is acknowledged as a limitation for large heterogeneous environments.

4 The Proposed Defensive Architecture for FL Model Updates

This section presents the proposed defensive architecture for FL model updates, which leverages
blockchain technology. The section starts by presenting the initialization and registration phase, followed by
the authentication phase, and concludes with the FL model update security phase.

4.1 Initialization and Registration

The registration procedure is shown in lines 1-3 of Algorithm 1. The network administrator first creates
the smart contract and records all client and CH credentials, including the client’s IVs and EA of the CH’s
Ethereum accounts. These credentials are then linked (mapped) to the servers’ EA. The credentials of all
registered members are saved in the blockchain ledger inside the private network.

4.2 Authentication

During the process of submitting a model update, the client initiating the submission is required to
make a request to submit the update. This request is made using the function called “Request2Update” in the
Algorithm 1. The client must provide the necessary parameters, including its IV, the associated cluster head
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EA, and the EA of the server. Subsequently, the system will commence a search inside the network to locate
the submitting client among the registered clients.

When located, the smart contract will verify whether the client is associated with the said cluster head
and server as seen in line 8 of Algorithm 1. If the mapping is found to be accurate, the smart contract
determines the existence and validity of the client (lines 8 to 11, Algorithm 1). Conversely, if the mapping is
not accurate, the smart contract classifies the client as false and untrustworthy (line 14, Algorithm 1).

The smart contract operates under the assumption that clients that are already authenticated are
considered genuine (as shown in lines 16-18 of Algorithm 1). Subsequently, it initiates a submission grant
event and generates a grant token. In the event that a refusal message is provided, it is stated that no grant
will be awarded.

Upon obtaining the grant token from the smart contract, the submitting client will proceed to include
the token into the update submission message, which will be encapsulated inside a signed packet-message.
Subsequently, the client will transmit this packet-message to the server over the CH aggregator (line 28
of Algorithm 1). The server employs the token to authenticate the legitimacy of the submitting client via
the smart contract, subsequently providing an appropriate response to the submission for either accept
submission or reject it (lines 31-39 of Algorithm 1).

Algorithm 1: Registration and authentication

Input: client;y, CHga, Serverga
Output: Token, Accept submission, Reject submission

L //Register and map a client to a Server
2. Serverga < clientry;;
3. Return: Client has been added in Server Mapping!
4. /I Check if device exists in server-map
5. Function: Request2Update (New-Request)
6. For ClientExists = True Do
7. /I check for a particular client
8. If ((Serverps < client;y;) = True) Then
9. /I client is mapped to a server
10. Servergy < clientpy;;
11. Return: clientExists = True!
12. break;
13. Else
14. Return: clientExists = False!
15. End
16. If clientExists = True Then
17. clientAuthentication = True;
18. Return: Client Authenticated!
19. Else

(Continued)
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Algorithm 1 (continued)

20. clientAuthentication = False;

21. Return: Client not Authenticated!

22. End

23. End

24. While clientAuthentication = True Do

25. //Generate Token

26. Return: Token Created!

27. //Establish Open connections to server and submit update
28. Serverga< Update{Model, client;y;, CHga, Serverga, Token;}
29. End

30 End function

3L Function: ValidateToken

32. //Check if Token authentic

33. If (Token; = Token; —1) = True;

34. Return: Token Authentic!

35. Return: Model Accepted!

36. Else

37. Return: Token Not Authentic, and Model Rejected!

38. End

39. End function

4.2.1 Description of Inputs and Process in Algorithm 1

The registration process pairs each client IV with its server EA and associated CH and saves the pair on
the blockchain. During authentication, clients send their IV and associated EA; the smart contract verifies
this against stored mappings and grants a submission token upon success. The token is then added to the
update packet to serve as proof of authenticity.

4.2.2 Computational Complexity of Algorithm 1

Verification operation is a lookup in registered clients, O(n), where # is client size in the registry.
« Token generation and mapping verifications are O(1) operations.
« Total complexity: O(n) + O(1) » O(n) per authentication request.

This efficiency makes the solution practicable to dynamic federated environments where thousands of
authentication requests are executed in a round.

4.3 Federated Learning Model Update Security

The proposed approach utilizes a clustering technique to address the possible effect of attacks on server-
received updates. The objective of clustering updates is to organize comparable updates into clusters, with
each cluster represented by a single aggregate vector (referred to as the cluster head) for the purpose of
identifying possible malicious clients. In order to mitigate the risk of exploitation by an adversary that
submits diverse harmful updates, a two-phase outlier elimination technique was used. During the first stage, a
clustering technique is used to aggregate data based on distance, therefore excluding updates that are deemed
suspicious. During the second phase, the procedure for removing outliers is expanded to include all cluster
centers, resulting in a more refined aggregate that is calculated as the average of the remaining cluster centers.
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The process of removing outliers in two phases poses a strategic challenge for adversaries. Each of
them is faced with a decision: whether to exert a self-interested influence on the overall model aggregate by
consistently providing comparable updates, or to distribute their updates among numerous clusters, therefore
diluting their effect on the final aggregate. The defensive algorithm effectively manages these events by using
a two-phase approach. By using the restricted k-means method for clustering, it is assured that each cluster
has a minimal number of data points. This approach effectively tackles the issue of local solutions that may
result in empty clusters or clusters with a limited number of points. Additionally, the technique provides a
guarantee of convergence.

In order to mitigate one-shot threats, the optimization of parameters (¢ and #) in each round is
conducted dynamically by using a limited validation dataset (d;.;). Smart contracts, which are implemented
on the blockchain, facilitate the automation of the validation process by enforcing predetermined rules and
modifying parameters in accordance with agreement reached among the nodes within the network. The
use of automated validation mechanisms significantly contributes to the enhancement of trustworthiness
in the process of model aggregation. The algorithm’s specifics are delineated in Algorithm 2, which include
clustering updates (X . . . X, ), aggregate update (f3) calculations, global model parameter setup, and iteration
through pairings of (g,+) to provide the optimal model aggregate (8*") with the lowest validation loss,
where w* is the new model weight [52].

Algorithm 2: Aggregated clustering method

Input: Model wupdates f...[3,, validation dataset d;;, 9, R, outlier
removal generator , current model weight w

Output: The model aggregate f**

1. Minges < info

2. B «0

3. Ky...Ky, = Clusture(fi...Bu),
4. For (¢,7) e QxR Do

5. For i=12,...,b Do
6. 8i «H(Xia)

7. End

8. B <~ H(6i...,07)

9. w* —w + f*

10. loss < X (x,y)eds LU (Xi307), i)
11. If loss < min;,,; Then

12. Ming,ss < loss

13. Bt < p*

14. End

15. End

4.3.1 Definition of Parameters in Algorithm 2

o g: Minimum number of updates per cluster, with no trivial or empty clusters.

o r:Dynamic radius threshold, largest acceptable distance between updates in the same cluster. Adaptively
scaled each iteration.

o Stopping Criteria: Iterations terminate when (i) cluster assignments no longer change, or (ii) T iteration
limit reached.
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«  Validation Dataset (V): Employed to test collective performance under clustering; helps dynamically
setr.

4.3.2 Convergence Guarantee in Algorithm 2

The k-means clustering used with restricted updates guarantees convergence because:

« Intra-cluster variance is reduced monotonically in each iteration.
o  Adversarial updates grow more constrained as a result of the dynamic threshold r.
 Final aggregation is computed as the mean of remaining cluster centers, reducing validation loss.

This is aligned with theoretical guarantees offered by Li (2022) [52], where clustering-based defenses to
FL converge within polynomial time with bounded update variance.

4.3.3 Computational Complexity of Algorithm 2

o  Each cluster iteration distributes # client updates over k clusters: O(nk).

« Repeated for T iterations until algorithm convergence: O(nkT).

o Since k < n in typical deployments (e.g., 10 clusters, hundreds of clients), the algorithm is still
computationally feasible.

Compared to purely theoretical defenses, the Algorithm 2 can be fully automated by smart contracts.
Update validation and threshold tuning are enforced on-chain, enabling reproducibility and auditability
in deployed FL. The entire defensive process unifying Algorithm 1 (registration and authentication) and
Algorithm 2 (cluster-based pruning) is illustrated in Fig. 2, which shows how authenticated updates are
funneled through the blockchain-mediated pipeline, filtered by cluster heads, and securely aggregated into
the global model.

In summary, the two algorithms in Secured-FL are closely coupled, as evident in Fig. 2. Algorithm
1 manages the registration and authentication phases so that every participating client has a cluster head
and server assigned to it and receives a one-time submission token before it makes a contribution update.
Algorithm 2 is then executed downstream at the cluster heads, where only authenticated updates are received.
Here, two-phase outlier removal and restricted k-means prune poisoned contributions and detect them
before transmitting centroids to the server. The authentication pipeline and clustering defense together form
an end-to-end process: Algorithm 1 establishes provenance and trust, and Algorithm 2 provides integrity
and resilience of the aggregated model. The flowchart in Fig. 2 depicts this relationship by showing how
blockchain-based authentication occurs prior to cluster-level filtering, effectively diminishing the attack
surface and ensuring convergence of the global model.
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Figure 2: Workflow of the proposed Secured-FL defensive process. This figure summarizes the integrated workflow of

Algorithms 1 and 2, from client registration to secure aggregation of pruned updates

5 Security Analysis

This section provides an analysis of the security architecture implemented in the proposed system.
Security of Secured-FL can be examined along three axes: authentication and privacy, resistance to poisoned

updates, and blockchain smart contract integrity.
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5.1 Authentication and Privacy
Each client (C;) is assigned a unique identity value (IV;) and an Ethereum address (EA;). A smart
contract (S) maintains a mapping:

M:(IVi, EA) = T, 2)

where T; is a submission token generated by S upon successful authentication of I'V; and EA;. Only clients in
possession of a valid T; can make submissions may issue updates. This stops unregistered adversarial nodes
from injecting poisoned updates. The time complexity of authentication checking is O(n), where n is the
number of registered clients, while issuing tokens is constant time O(1). The overhead of authentication is,
therefore, negligible in large-scale settings.

5.2 Poisoned Update Protection

Against adversarial poisoning, Secured-FL employs restricted k-means clustering with dynamic thresh-
olding. Model updates {u;, u,, ..., u,} are clustered into k groups. The clustering objective is:

k
min 3 Y - | )

Cireees G j=lu;eC;
subject to the constraint
‘C]‘Zq,V]El,,k (4)

where q is the minimum cluster size and y; is the centroid of cluster C;.

To prevent attackers from spreading poisoned updates across clusters, a dynamic radius threshold r; is
imposed:

1
Tr=0¢'72 | wi—uj |l (5)

| | M,‘ECJ‘

where V is the validation set, y is the global centroid, and « is an adaptation factor. Updates falling outside
r; are identified as outliers and trimmed.

The computational complexity for this step is O(n - k - T)), where T is the maximal clustering iteration
number. Since k < n, such complexity is acceptable in practice.

5.3 Smart Contract Audit

Secured-FL smart contracts were audited using Oyente, a well-known static analyzer for Ethereum
bytecode. The audit did not detect any critical vulnerabilities, namely:

« No re-entrancy attacks were found.
« No integer overflow/underflow vulnerabilities were found.
« No timestamp dependence or transaction-ordering dependence (TOD) was found.

Formally, the security of the contract can be expressed as:

P (Critical Vulnerability) ~ 0 under Oyente analysis coverage of 59%

This implies that the contract logic for token minting, authentication, and registration is safe from
traditional Ethereum-based attacks.
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Though the PoA consensus realizes finality of updates and Oyente audit certified that there was no
reentrancy or overflow vulnerability, we do acknowledge that validator collusion remains a valid threat in
consortium systems. This is mitigated by restricting validator membership and is proposed for consideration
within hybrid PoA/PoS protocols.

5.4 Scalability and Consensus
Secured-FL utilizes Proof-of-Authority consensus, which is low-latency block validation. The estimated

block confirmation time is given by:

1

BCT = ——
A V]

(6)

where A is the block creation rate and | V| is the number of validators. Since | V| is small and constant in PoA,
latency is bounded even if the number of clients is high.

Simulation results (Figs. 3 and 4) show that Secured-FL maintains consistent accuracy and acceptable
latency with up to 500 clients in 10 clusters. Block confirmation time increased approximately linearly with
client size but was ~10% lower than PPSS because of fewer re-transmissions.
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Figure 3: Precision-Recall curve of Secured-FL in the presence of adversarial participation. The large area under the

curve (~0.89) reflects that Secured-FL has robust classification performance even when nearly half of the participating
clients are malicious
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Figure 4: Accuracy of Secured-FL and PPSS with varying number of participating clients from 100 to 500. Secured-FL
achieves a consistent 6%-9% accuracy gain irrespective of scale, showing robust scalability

Yet while PoA provides efficiency;, it is at the expense of decentralization. To scale to thousands of clients
in heterogeneous smart city infrastructures, hybrid consensus models (PoA/PoS) and sharded blockchain
architectures will be investigated in future work.

5.5 Summary

With formal authentication guarantees, adaptive threshold-based clustering defenses, and formally
verified smart contract security, Secured-FL enforces tamper-resistance, accountability, and resistance to
adversarial poisoning. Practical viability is also confirmed via scalability analysis to 500 nodes with clear
pathways for additional decentralization and performance gains in future deployments. Two-stage clustering
defense directly counters the adversarial optimization objective presented in Section 3, through the dynamic
restriction on radius r and enforcing minimum cluster size g, thereby limiting the effectiveness of poisoned
updates in reducing global loss.

6 Implementation and Results

This section provides a comprehensive description of the experimental setup and simulation findings.
We do a comparative study to evaluate the efficiency of our proposed model in comparison to the benchmark
model described in [4] (PPSS). The choice of the benchmark model was determined based on its contextual
relevance, adherence to state-of-the-art techniques, and its resemblance and recency in comparison to
our proposed model. The benchmark model utilizes blockchain technology, with a focus on transaction-
based interactions. Our solution leverages the Ethereum blockchain and necessary tools to ensure that all
interactions are carried out as transactions and can be measured in terms of gas per unit transaction in the
Ethereum network.

6.1 Experimental Setup and Description of Dataset

For the sake of reproducibility and transparency, experimental setup and dataset details used for
evaluation of Secured-FL are explained in this section.

6.1.1 Cyber Data Dataset

We used the Cyber Data dataset, a dataset of traffic and intrusion records with a focus on cybersecurity
being developed. It contains approximately 35,000 labeled records with 20 derived features covering benign
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and malicious traffic. Five attack classes are covered along with normal traffic. To deal with data imbal-
ance, oversampling was done using Synthetic Minority Oversampling Technique (SMOTE). Features were
normalized using min-max scaling for uniformity between input variables.

The data was split into 70% train, 15% validation, and 15% test. The validation set was also used to
dynamically adjust clustering thresholds during the progress of defense rounds to facilitate fair comparisons
across attack proportions.

6.1.2 Simulation Environment

The Secured-FL model was executed on the Ethereum Rinkeby testnet under a Proof-of-Authority
consensus model. Smart contracts were implemented in Solidity (v0.8.10) and were accessed by Python
modules via Web3.py. Secure transaction processing was made possible with the use of the MetaMask
Ethereum wallet.

Experiments were conducted on a workstation with an Intel Core i7-6700M processor (3.41 GHz),
16 GB RAM, Ubuntu 22.04, and Python 3.10. While no GPU was used for this work, future extensions will
employ CUDA-acceleration for larger datasets and for more deep models. Table 2 provides an overview of
the experimental setup parameters and their descriptions.

Table 2: Experimental setup summary

Parameter Description
Blockchain environment Ethereum (Rinkeby testnet), Proof-of-Authority consensus
Smart contract language Solidity (v0.8.10)
Client configuration 500 clients across 10 clusters (with Cluster Heads)
Malicious clients Varied: 10%-50%
Training rounds 50 rounds x 5 repetitions (250 iterations)
Dataset Cyber Data (~35,000 records, 20 features, 5 attack classes + benign)
Data split 70% train, 15% validation, 15% test
Preprocessing Min-max feature normalization; SMOTE oversampling
Learning rate 0.01
Optimizer Adam (weight decay 1 x 107%)
Batch size 64
Stopping criterion Early stopping after 10 stagnant rounds
Hardware Intel i7-6700M, 16 GB RAM, Ubuntu 22.04, Python 3.10

6.1.3 Training Configuration

Clients were divided into 10 groups, each led by a Cluster Head. A fixed set of clients was randomly
selected to participate in each training round. Malicious ratios were fixed between 10% and 50%. Training
was repeated 50 times per scenario x 5 repetitions (total of 250 iterations).

Learning rate was 0.01 and the Adam optimizer (weight decay =1 x 10~*) was applied. Batch size was 64
and an early stopping condition of 10 rounds with no improvement in the validation accuracy was employed
to avoid overfitting.

The experimental setup above constitutes the basis of a rigorous assessment of Secured-FL. By incor-

porating a well-defined dataset split, organized adversarial ratios, and constrained blockchain deployment,
the setting allows us to examine the resilience, performance, and expandability of the framework in a
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reproducible manner. The results of these tests are described in the following subsections, beginning with
model robustness and followed by computational efficiency, statistical verification, interpretability, ablation
experiments, and scalability. Together, these tests provide an overall picture of the merits and demerits of the
given framework.

6.2 Evaluation and Results

Secured-FLs performance was evaluated by a series of controlled experiments designed to assess its
resilience to adversarial attacks, its efficiency, and its scalability to increasing numbers of participants. The
following subsections provide a comprehensive evaluation of Secured-FL on accuracy, efficiency, resilience,
and scalability fronts.

6.2.1 Results on Model Robustness

Fig. 5 presents the comparison of accuracy, precision, and recall of Secured-FL against PPSS baseline
under adversarial conditions from 10% to 50% malicious clients. The results show a consistent and widening
margin of performance in favor of Secured-FL as the adversarial client participation increases. Accuracy is
boosted by six to twelve percentage points at larger attack strengths, and precision is highly robust, partic-
ularly at 40% and 50% malicious clients, indicating poisoned updates are effectively being filtered without
rejecting benign ones. Recall is comparatively steady, indicating that the system’s defense mechanisms do not
unjustly penalize legitimate contributions. Together, these findings demonstrate that Secured-FL enhances
not just numerical performance but also preserves fairness in the aggregation process so that the model
converges stably in settings where baseline defenses degrade rapidly.
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Figure 5: Secured-FL accuracy, precision, and recall compared to the PPSS baseline at varying levels of adversarial
clients (10%-50%). Error bars indicate + one standard deviation over five independent runs. Secured-FL demonstrates
improving accuracy (6%-12%), improving precision at higher adversarial severity, and improving recall, confirming
robustness and fairness in aggregation

6.2.2 Latency and Computational Overhead

The efficiency of Secured-FL is demonstrated in Fig. 6, graphing latency and computational expense
against increasing adversarial proportions. Secured-FL consistently lowers latency by approximately
9%-15% compared to PPSS. This is because of the Proof-of-Authority consensus that reduces validation time
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and because of pruning of poisoned updates that limits gratuitous retransmissions. Computational expense
in terms of gas usage is moderate and increases linearly with cluster numbers. Although there is some increase
in cost with higher adversarial proportions, the figure is still reasonable, showing that increased security is
possible without exorbitant resource overhead.
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Figure 6: Secured-FL and PPSS average latency and computational cost (gas consumed) with increasing proportion of
adversaries. Error bars show + one standard deviation over five runs. Secured-FL exhibits reduced latency (~¥9%-15%
reduction) and minor savings on computational cost due to the efficiency of Proof-of-Authority consensus and early
pruning of poisoned updates

6.2.3 Statistical Significance

In order to ensure that the gains observed do not happen by chance, statistical testing was performed
across five experimental runs for each scenario. The results indicate that accuracy improvements achieved
by Secured-FL compared to PPSS are statistically significant at the p < 0.05 level for adversarial participation
above 20%. Latency reductions were significant at the p < 0.1 level. Figs. 5 and 6 also include error bars for
95% confidence intervals, which further confirm the stability and reproducibility of the results.

6.2.4 Interpretability and Qualitative Analysis

Along with aggregate metrics, interpretability metrics also support the case of adversarial robust-
ness. Fig. 7 shows the confusion matrix of Secured-FL under 50% malicious participation, where the
system provides improved true positive detection of benign contributions with fewer false positives than
PPSS. Figs. 3 and 8 also present ROC and Precision-Recall curves, with Secured-FL sustaining an area
under the curve above 0.9 across multiple adversarial levels. This indicates that the defense herein not
only improves collective accuracy but also improves the model’s ability to distinguish between benign and
malicious updates, further deepening its resilience to adversarial strategies.
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Figure 7: Secured-FL confusion matrix for adversarial clients with 50% attack. The system obtains high true positives
of benign updates with reduced false positives, indicating good discrimination between adversarial and benign
contributions
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Figure 8: Receiver operating characteristic (ROC) curve of secured-FL under adversarial participation. The area under
the curve (AUC) is always above 0.9 for different attack levels, confirming better discriminatory strength against
adversarial updates

6.2.5 Ablation Study

The ablation study summarized in Table 3 shows the isolated contribution of each of the primary
components of Secured-FL. Deactivating clustering caused a significant loss of accuracy, confirming that
aggregation without filtered structuring exposes the system to poisoned updates. Deactivating dynamic
threshold adaptation also reduced resilience, with the model being vulnerable to adaptive attackers. While
blockchain-only authentication provided improved accountability, it was not sufficiently resistant to model
poisoning, thereby causing reduced accuracy as well as increased latency. In contrast, the full Secured-FL
framework with incorporated blockchain-based authentication, clustering, and dynamic thresholds main-
tained the highest accuracy with a steady latency profile. These findings confirm that it is the combination
of blockchain accountability with adaptive defense mechanisms that achieves the observed robustness.
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Table 3: Ablation study of the impact of Secured-FL components with intensities less than 50% adversarial clients.
Clustering removal impacts the greatest drop in accuracy, suggesting its central role in stopping poisoned updates.
Removal of dynamic threshold adaptation leaves the model vulnerable to adaptive attacks, while blockchain-only auth
improves accountability but does not ensure resilience. The entire Secured-FL system has ideal trade-oft between latency
and accuracy, as would be anticipated, to ensure that the synergy among clustering, dynamic thresholds, and blockchain
provides strength

Configuration Accuracy (50% Adversarial) Latency
Without clustering 62% Lowest
Without dynamic radius 66% Moderate
With blockchain only 68% High
Full Secured-FL 74% Moderate

6.2.6 Scalability

Figs. 4 and 9 test the scalability of Secured-FL by varying the number of participating clients from
100 to 500. Accuracy is always superior to PPSS, with improvements of between six and nine percentage
points across all settings. Block confirmation time increases steadily with client numbers due to the rise
in transaction volume, but Secured-FL still has approximately 10% faster confirmations than PPSS. The
results show that the system is stable under moderately large-scale deployments and can sustain large client
populations without loss of accuracy or acceptable levels of latency increments. However, the employment
of Proof-of-Authority consensus, while efficient, curtails decentralization by way of limiting validator
participation. Such a trade-off, while feasible for private or consortium environments, may even for larger-
scale deployments such as nationwide smart city installations require hybrid consensus models or sharded
architectures to uphold performance.
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Figure 9: Block confirmation time for Secured-FL and PPSS as the number of clients increases. Even though both
systems have comparatively modest increases in latency, Secured-FL achieves approximately 10% smaller confirmation
times due to improved consensus and poisoning update pruning
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7 Discussion: Prospects, Limitations and Future Work

The integrated results solidify Secured-FL as a robust system for adversarially robust federated learning.
The improvements in Figs. 3-9 show that the integration of blockchain authentication, clustering-based fil-
tering, and dynamic thresholding enhances accuracy, interpretability, and scalability simultaneously. Unlike
existing approaches, which would apply static thresholds or centralized trust assumptions, Secured-FL adapts
to varying adversarial strengths and exhibits reproducibility through statistically significant outcomes.

Scalability analysis also brings out the pragmatism of the framework. Accuracy remains consistent as the
population of clients increases, and latency rises predictably rather than exponentially. But at great trade-offs.
Proof-of-Authority offers low latency and efficiency but reduces decentralization and introduces reliance on
a trusted set of validators. Engaging cluster heads reduces communication cost but also presents weak spots
in the network in case these nodes are compromised. These trade-offs highlight the necessity of carefully
matching system design to deployment context and trading off decentralization, efficiency, and robustness.

Several limitations remain. The Cyber Data dataset, although suitable for benchmarking, is still under
development and does not have the diversity of large-scale, real-world corpora. Experiments were conducted
on the Rinkeby testnet, which does not closely reflect industrial conditions, particularly heterogeneous
bandwidth and energy-constrained environments. Furthermore, although scalability was evaluated at
500 nodes, real-world deployments would potentially require thousands of client support. Finally, the
assumption of uncompromised blockchain immutability holds in private and consortium settings but
requires further validation for public networks.

Despite these limitations, the merits of Secured-FL lie in its balanced design. The framework provides
measurable resilience gains without prohibitive computational or communication overhead. Its flexibility
and accountability features make it particularly well-suited for applications where trust and transparency are
paramount, e.g., healthcare, energy grids, and smart city infrastructure.

8 Conclusion

Secured-FL, a blockchain-facilitated framework, was proposed here to secure federated learning against
adversarial attacks. By merging authentication based on smart contracts with outlier elimination through
clustering-driven exclusion and dynamic threshold tuning, the framework enforces transparent participa-
tion, tamper-resistance, and adaptive defense against model poisoning. Executed on a private Ethereum
network utilizing Proof-of-Authority consensus, Secured-FL attained steady enhancements in both efficiency
and robustness.

Experimental evaluation demonstrated that Secured-FL performed six to twelve percentage points
higher in accuracy, had a nine to fifteen percent reduction in latency, and roughly fourteen percent reduction
in computational expense compared to the PPSS baseline. Interpretability analysis through confusion
matrices, ROC and Precision-Recall curves endorsed its discrimination against poisoned updates, and the
ablation study established the essential function of clustering and dynamic thresholds to overall resilience.
Scalability tests validated steady functioning as high as 500 clients, with tolerable block confirmation time
expansion, validating the adequacy of the structure for reasonably big rollouts.

At the same time, certain limitations must be pointed out. The Cyber Data dataset, while adequate for
purposes of benchmarking, is not yet representative of the heterogeneity of adversarial conditions faced in
actual environments, and use of a testnet environment decreases generalizability to industrial environments.
Secondly, while low-latency validation is provided via Proof-of-Authority, decentralization is constrained
and perhaps not optimally suited for extremely heterogeneous infrastructures.
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Despite these constraints, Secured-FL advances the boundary of adversarially resilient federated
learning by best balancing between robustness, efficiency, and accountability. Its architecture is best suited
for applications where trust and transparency are negotiable nothing, including for smart city services,
healthcare infrastructure, and mission-critical IoT networks. Future research will continue to test the
performance on larger and more diverse data sets, investigate hybrid consensus protocols for additional
scalability and decentralization, and conduct testing in mainnet and consortium blockchain environments.
To this end, Secured-FL can evolve into an industry-designed solution for federated learning security on
adversarial and heterogeneous environments.
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