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ABSTRACT: In multi-domain neural machine translation tasks, the disparity in data distribution between domains
poses significant challenges in distinguishing domain features and sharing parameters across domains. This paper
proposes a Transformer-based multi-domain-aware mixture of experts model. To address the problem of domain
feature differentiation, a mixture of experts (MoE) is introduced into attention to enhance the domain perception
ability of the model, thereby improving the domain feature differentiation. To address the trade-off between domain
feature distinction and cross-domain parameter sharing, we propose a domain-aware mixture of experts (DMoE). A
domain-aware gating mechanism is introduced within the MoE module, simultaneously activating all domain experts
to effectively blend domain feature distinction and cross-domain parameter sharing. A loss balancing function is then
added to dynamically adjust the impact of the loss function on the expert distribution, enabling fine-tuning of the expert
activation distribution to achieve a balance between domains. Experimental results on multiple Chinese-to-English
and English-to-French datasets demonstrate that our proposed method significantly outperforms baseline models in
both BLEU, chrF, and COMET metrics, validating its effectiveness in multi-domain neural machine translation. Further
analysis of the probability distribution of expert activations shows that our method achieves remarkable results in both
domain differentiation and cross-domain parameter sharing.

KEYWORDS: Natural language processing; multi-domain neural machine translation; mixture-of-expert;
domain-aware gating mechanism

1 Introduction
In recent years, neural machine translation has developed rapidly. Neural machine translation models

based on encoder-decoder structures are trained using large amounts of bilingual corpora and can achieve
higher translation quality than traditional methods in multiple language pairs [1,2]. However, some general
fields have massive corpora, while some specialized fields have scarce corpora. Moreover, a model trained in
general fields can hardly accurately translate the professional terms in medical reports, nor can it understand
the rigorous sentence structures in legal documents. How to make neural machine translation models
effectively adapt to various fields has become a new research hotspot.

To solve this problem, researchers proposed multi-domain neural machine translation, hoping that the
model can adapt to multiple domains at the same time. In order to build a model that performs well on
multiple domains, several challenges must be overcome. The first problem is the imbalance of domain data.
The amount of training corpus owned by different fields varies greatly. During the training process, some
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fields have a much greater impact on the model than others, which weakens the influence of other fields on
the model. The second is domain confusion. The translated texts in the real world come from a wide range of
sources. Different fields not only use different words, but also have significantly different language features
and expressions. Multi-domain neural machine translation models need to learn the language styles and
knowledge expressions of multiple fields at the same time during training, which easily leads to the dilution
and confusion of domain features [3,4].

To address the above challenges, researchers have proposed two basic methods to build a multi-domain
neural machine translation model. One method is domain adaptation based on pre-training and fine-tuning,
that is, training a basic model on a massive general corpus, and then using the prior knowledge acquired
by the model to continue training the pre-trained model on a specific domain to quickly adapt to the target
domain [5,6]. However, the effectiveness of this method is highly dependent on the fit between the pre-
trained model and the underlying task. When there are large differences between the pre-training corpus
and the target corpus, the strong general language prior knowledge formed in the pre-training stage may
conflict with the language style or terminology of the specific domain, and in turn interfere with the model’s
learning of the new domain. Another method is to use multi-domain data joint training from scratch. This
method mixes data from all related domains and trains a single model from scratch. Although this method
abandons the starting advantage brought by pre-training, it avoids the above-mentioned knowledge conflict
and data scale and parameter mismatch problems by directly learning the data distribution of the specific
task [7].

Given the disadvantages of pre-trained models in terms of domain mismatch and difficulty in fine-
tuning, in recent years, more and more research has been devoted to using multi-domain corpora to build
a unified neural machine translation model so that it can maintain good translation performance across
multiple domains. In multi-domain neural machine translation, the two most important issues are domain
adaptation [8] and cross-domain parameter sharing. In order to solve the problem of domain differentiation,
existing studies have introduced explicit domain labels as auxiliary information. Multi-domain translation
can be regarded as multi-task learning with the same loss function. In order to enable the model to distinguish
different tasks, researchers often design explicit task labels for each subtask to enable the model to distinguish
tasks [9]. Similarly, in multi-domain translation, there are corresponding domain labels; that is, the model
hopes that the domain information of the sentence will be provided as explicit information to guide the
translation process. This type of method often achieves good results in practice because it has explicit domain
information to guide the model’s domain differentiation, and can make the model more interpretable and
controllable. In order to solve the parameter sharing problem, researchers have also used various methods
to enable parameters to be shared between different domains, hoping that the information carried by these
parameters can be used by different domains [10].

In summary, domain discrimination and cross-domain parameter sharing are not only the core chal-
lenges of multi-domain neural machine translation, but also a pair of mutually constrained contradictions.
In order to alleviate this contradiction, the method in this paper introduces explicit domain labels to guide
MoE routing and uses domain-differentiated attention to enable attention to dynamically route data from
different domains, thereby enhancing the domain discrimination ability of the model. At the same time,
we use the improved DMoE to enable cross-domain parameter sharing between domains. In general, the
contributions of our work are as follows:

(1) We propose a Domain-Aware Multi-Head Attention module that combines the domain percep-
tion capabilities of MoE with multi-head attention, thereby explicitly improving the attention’s ability to
distinguish domain features and enhancing the model’s domain adaptability.
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(2) We propose an improved activation mechanism for the mixture of expert module and construct
a Domain-Aware Mixture of Experts (DMoE) model. This mechanism optimizes the activation strategy
and introduces a new load-balancing loss function, enabling the model to dynamically select experts to
participate in the calculation based on input features, thereby enhancing domain discrimination capabilities
and promoting cross-domain knowledge sharing and transfer.

(3) Experimental results on multi-domain English-Chinese and English-French datasets demonstrate
the effectiveness of our proposed method.

2 Related Work
The academic community has conducted extensive and in-depth research on the domain adaptation

problem of neural machine translation models. Kobus et al. [11] introduced domain information into the
machine translation model by adding domain information indicators to the source text, making the neural
network focus on the domain of each sentence pair. Tars and Fishel [12] went a step further and regarded
different text domains as different languages, introducing a multilingual translation method and adding
domain embedding as a separate input feature to each source sentence word. Both methods can improve the
performance of recurrent neural networks in multi-domain neural machine translation. In order to avoid the
problem that training a neural machine translation system on simple mixed data may reduce the performance
of the model suitable for each component domain, Britz et al. [13] proposed three domain discrimination
methods: discriminator networks, adversarial learning, and target-side domain tokens, and achieved this
goal by jointly learning domain discrimination and translation. Zeng et al. [14] generated two gated vectors
based on the sentence representations produced by the domain classifier and the adversarial domain classi-
fier, and used them to construct domain-specific and domain-shared annotations for subsequent translation
prediction through different attention models, and used the attention weights derived from the target-side
domain classifier to adjust the weights of the target words in the training target. In order to achieve effective
domain knowledge sharing and capture fine-grained domain-specific knowledge, Jiang et al. [15] proposed
a novel multi-domain neural machine translation model. In their model, it is assumed that each word has
a domain ratio, which represents the word’s domain preference. Then, word representation is obtained by
embedding it into various domains based on the domain ratio. This is achieved through a carefully designed
multi-head dot product attention module. Finally, the weighted average of the word-level domain ratio is
taken and incorporated into the model to enhance the model’s domain recognition ability. In order to solve
the problem that the method of mixing data from multiple domains to obtain a multi-domain neural machine
translation model may cause parameter interference between domains, Huang et al. [16] introduced a multi-
domain adaptive neural machine translation method, which learns domain-specific sub-layer latent variables
and uses Gumbel-Softmax reparameterization technology to simultaneously train model parameters and
domain-specific sub-layer latent variables. Since then, researchers have gradually focused on optimizing the
training process of multi-domain neural machine translation through reinforcement learning and dynamic
sampling strategies. Allemann et al. [17] proposed two reinforcement learning algorithms, Teacher-Student
Curriculum Learning and Deep Q-Network, to automatically optimize the training order of multilingual
NMT, enabling the model to adaptively balance the training ratio of high- and low-resource languages.
The Meta-DMoE framework proposed by Zhong et al. [18] achieves domain adaptation during testing
by performing meta-distillation from multi-domain expert models, effectively alleviating the problem of
domain shift. Pham et al. [19] proposed the Multi-Domain Automated Curriculum (MDAC) framework,
which leverages reinforcement learning to dynamically adjust the sampling ratio of multi-domain data
to address domain distribution mismatch and continuously optimize the training process. Overall, these
efforts have improved the adaptability and training efficiency of multi-domain translation models through
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reinforcement learning or dynamic strategies. However, these approaches often struggle to achieve an ideal
balance between modeling flexibility, parameter sharing, and computational efficiency. Their scalability
is particularly limited when dealing with large-scale, multi-domain data, and they still have significant
shortcomings in parameter isolation and cross-domain transfer capabilities. To overcome these bottlenecks,
researchers have begun to focus on model architectures with dynamic routing and modular structures, the
most representative of which is the MoE method.

The MoE was first proposed by Jacobs et al. [20]. It provides a new connection between two apparently
different approaches: multi-layer supervised networks and competitive learning, by introducing a gate
control mechanism to dynamically combine multiple expert sub-networks to adapt to different inputs. The
core idea of the mixture of experts is to refer to multiple neural network submodules as experts. A gating
network dynamically selects certain experts to participate in the calculation based on the input content,
rather than activating all experts every time. This significantly improves the model’s parameter size and
expressiveness without significantly increasing computational costs. Although MoE has been proposed for a
long time, it has not been widely used in large-scale scenarios due to the limitation of computing resources.
It was not until Shazeer et al. [21] proposed a scalable and sparse MoE layer to solve the problem of
increasing model capacity without significantly increasing computational costs that its application in large-
scale models became possible. This was the first time that the MoE was introduced into the neural machine
translation model, and the effectiveness of the MoE in large models was proved, laying a solid foundation
for the subsequent development of large models. In recent years, MoE has been further developed in works
such as GShard [22] and Switch Transformer [23]. Researchers are increasingly using MoE for large-scale
multilingual neural machine translation and multi-tasks, in which MoE has demonstrated strong scalability
and computational efficiency.

Although existing studies have explored domain-aware attention mechanisms and modular methods,
there are still certain limitations. Zhang et al. [24] proposed a lightweight mixture of experts model MoA,
which explicitly characterizes the heterogeneity between languages through a phased training strategy and
clustering modeling, thereby improving parameter efficiency and training stability while ensuring perfor-
mance; while Chirkova et al. [25] applied sparse mixture of experts to multi-domain NMT in their research
and introduced a domain randomization mechanism to enhance the robustness of the model in unknown
domains or incorrect domain labels. However, although these two methods have certain innovations in
structural design, they still have problems such as computational complexity, high implementation difficulty,
and hyperparameter sensitivity, and their improvement in large-scale modeling and domain generalization
capabilities is still relatively limited. In addition, Zhang et al. [26] proposed that domain-aware self-attention
(DASA) only relies on explicit domain labels to assist attention differentiation, but fails to truly enhance the
domain discrimination ability of the attention module; Gururangan et al. [27] proposed DEMix layer leaves
different domains to independent experts, but ignores the potential knowledge sharing between domains.

In contrast, this paper combines the conditional computation mechanism of a Mixture of Experts with
an attention structure to propose an improved expert activation method. This method not only utilizes
domain labels to strengthen the domain discrimination of attention but also fully unleashes the potential
of MoE in cross-domain knowledge sharing and transfer, thereby achieving stronger domain adaptation
capabilities. Furthermore, this paper introduces the Mixture of Experts mechanism into the Transformer
framework and proposes a new domain adaptation method. Compared with existing methods, our method
has more flexible routing strategies, more efficient parameter sharing, and is more scalable when dealing
with large-scale data. Subsequent experimental results demonstrate that our proposed model outperforms
several state-of-the-art methods in both stability and performance when trained on English-Chinese and
English-French datasets.
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3 Preliminary

3.1 Mixture of Experts
MoE is commonly used in multi-task learning. By assigning different experts to each task, a single model

maintains high performance across diverse tasks. This paper treats translation tasks in different domains
as independent subtasks, introducing a MoE into the neural machine translation model to more efficiently
build multi-domain translation models, thereby improving the performance of neural machine translation
models in multiple domains.

MoE(x) =
N
∑
i=1

Gi(x)Ei(x) (1)

Eq. (1) represents the calculation process of the MoE, where x represents the input vector, Gi(x)
represents the weight calculated by the i-th expert in the routing network for the input x, Ei(x) represents
the output of the i-th expert, and N represents the total number of experts.

In current applications, not all experts are usually activated; only the top-k experts with the highest
weights are retained, which saves computing resources and improves model performance. As shown
in Eqs. (2) and (3), the MoE selects the most relevant K experts for each token through a dynamic router
and only calculates the output of these K experts, thereby improving computing efficiency and model
performance.

Gi(x) = So f t max(TopK(FFN(x), k)) (2)
FFN(x) =max (0, W1x + b1)W2 + b2 (3)

3.2 Multi-Head Attention
One of the main modules of the Transformer architecture is the multi-head attention mechanism

proposed by Vaswani et al. [28]. Instead of performing a single attention function, the multi-head attention
mechanism allows the model to jointly focus on information from different representation subspaces at
different positions. This is achieved by projecting queries, keys, and values n times using different, learnable
linear projection matrices. These parallel attention heads can focus on different aspects of the input sequence,
and their outputs are concatenated and re-projected to obtain the final output. Eqs. (4)–(6) represent the
computation process of multi-head attention. For a given sequence H, it is represented as Q, K, and V.

MHA (Q , K , V) = Concat (head1, . . . , headh)Wo (4)
Headi = Attention (QWQ

i , KWK
i , VWv

i ) (5)

Attention (Q , K , V) = so f t max(QKT
√

dk
)V (6)

where WQ ∈ Rdmod e l×dk , WK
i ∈ Rdmod e l×dk , WV

i ∈ Rdmod e l×dk , Wo ∈ Rdmod e l×dmod e l .

3.3 Notation Table
To improve the reader’s comprehensibility and the reproducibility of the experiment, this paper has

unified the main symbols and diagram identifiers that appear in the text, as shown in Table 1.
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Table 1: Notation table

Notation Section Definition
DAMHA Section 4 Domain-Aware Multi-Head Attention

DMoE Section 4 Domain-Aware Mixture of Experts
Ex Section 6.2 The xth expert

L1-L6 Section 6.2 Encoder layer x

4 Method
In order to solve the domain adaptability problem of models in multi-domain neural machine

translation, we expect the model to have two key capabilities: 1) the ability to distinguish inputs from
different domains. 2) the ability to share parameters between different domains. In addition, we also need
to maintain a balance between the two capabilities to maintain the expressive power of the model. However,
the mainstream neural machine translation model architecture represented by Transformer does not have
the above capabilities in its original design. To this end, we proposed an improved model based on the
Transformer. As shown in Fig. 1, the overall model is based on the Transformer framework. To more
effectively handle multi-domain translation tasks, we improved the multi-head attention mechanism and
feedforward neural network in the encoder and introduced two new modules: Domain-Aware Multi-Head
Attention (DAMHA) and Domain-Aware Mixture of Experts (DMoE).

Input
Embedding

+

DMoE

Add &Norm

DAMHA

Add &Norm

DAMHA

Add &Norm

Masked
DAMHA

Add &Norm

Feed
Forward

Add &Norm

Linear

Softmax

+

Output
Embedding

Nx

Nx

Positional
Encoding

Positional
Encoding

Figure 1: Our proposed model architecture
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4.1 Domain-Aware Multi-Head-Attention
To improve the model’s domain differentiation capability, we introduce MoE into the multi-head

attention layer. This mechanism leverages the characteristics of conditional computation, enabling the model
to dynamically select appropriate subnetworks based on the different domains of the input sequence. By
introducing the MoE module, the multi-head attention layer can dynamically route domain information,
thereby enabling the model to have a certain degree of fine-grained feature modeling capabilities and
enhancing its ability to differentiate between different domains [26].

Specifically, by replacing the linear mapping in the multi-head attention with MoE, attention can also
perceive the domain information of the input sequence. This design not only enhances the model’s ability to
model domain features but also further improves the model’s domain discrimination and context modeling
flexibility, as shown in Eqs. (7) and (8).

DAMHA (Q, K, V) = Concat (head1, . . . , headh)Wo (7)
Headi = Attention (QWQ

i , KWK
i , VMoE(V)vi ) (8)

where WQ ∈ Rdmod e l×dk , WK
i ∈ Rdmod e l×dk , WV

i ∈ Rdmod e l×dk , Wo ∈ Rdmod e l×dmod e l . The specific calculation process
MoE(V) is shown in Eqs. (1)–(3).

4.2 Domain-Aware Mixture of Experts
Simply relying on the model’s domain differentiation ability is not enough to solve the problem. Given

the limited expression space of the model, the model should also have the ability to share parameters
across domains. When replacing the feedforward neural network with the MoE module, we improve it
in two aspects to achieve cross-domain parameter sharing. First, regarding the expert activation strategy,
we require the MoE to simultaneously activate all experts during the forward computation to fully utilize
the expressive power of each expert. Second, we optimize the gating mechanism. Unlike traditional Top-k
gating, the MoE in our model assigns the optimal expert probability combination based on the input sample
information. These improvements not only strengthen the model’s ability to model domain characteristics
but also improve its overall stability and enable natural parameter sharing across different domains.

Although MoE can provide the model with efficient and scalable multi-domain learning capabilities,
its performance is usually dependent on large-scale data. Some studies have found that simply introducing
MoE cannot fully utilize the capabilities of the expert module and may even cause mutual interference
between experts from different fields. To alleviate this problem, forcing experts to achieve domain-specific
specialization is crucial to reduce negative transfer and improve domain-specific generalization. In our
model, we introduce domain labels to decouple the language features of different domains, forcing experts
to learn language information from different domains to improve the model’s ability to distinguish and
generalize in various domains [27]. We call this module Domain-Aware MoE(DMoE). In our model, two
modes are used to control the generation of the gating mechanism probability in the mixture of experts. Fig. 2
show the structures of these two modes.

4.2.1 Use Only Domain Information
As shown in Eq. (9), domain information is used to control the generation of the gating probability. This

pattern ensures that no matter how the sentence information is abstracted and extracted by the attention
module, the gate probability is always activated by the domain information.
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MoE(x) =
N
∑
i=1

Gi(d)i Ei(x) (9)

where d represents domain information and x represents the input information of the model.

Figure 2: The structure of the two modes

4.2.2 Using Domain Information and Sentence Fusion Information
Relying solely on domain information to guide expert selection works well in domain differentiation

tasks, but it is not robust enough in more complex scenarios. To address this, we adopt the second model
shown in Eq. (10), which fuses sentence and domain information to guide expert selection using a fusion
approach.

MoE(x) =
N
∑
i=1

Gi(xd)i Ei(xd) (10)

where xd represents the input after fusion of domain information.

4.3 Loss Function
To keep the model stable, we also introduce a balanced loss function for the DMoE to constrain the

selection of experts. Without this constraint, in the face of complex situations, the DMoE will lose its original
design intention. Regardless of the input of the gating network, the activation probability of each layer of the
gating network will be biased towards selecting a specific expert, making the probability distribution of each
domain tend to be the same. When training a multi-domain neural machine translation model, we define
two loss functions, of which the translation task loss is the core. Eq. (11) defines the loss function, and the
goal of translation is to minimize this loss.

LMT = −
⎛
⎝
(1 − ε) ⋅ log(py) +

V
∑
i≠y

ε
V − 1

⋅ log(pi)
⎞
⎠

(11)

where ε represents the smoothing coefficient, py represents the probability of predicting the true label,
pi represents the probability of selecting the i-th word in the vocabulary, and V represents the size of
the vocabulary.

Then there is the load balancing loss of the DMoE, as shown in Eq. (12). We define this load balancing
loss based on the mean square error to limit the probability distribution of experts in the gating module so
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that the usage frequency of each expert is close to uniform, thereby ensuring that all experts can be fully
utilized.

Lbl =
1
N

N
∑
j=1
( 1

B

B
∑
i=1

pi , j −
1
N
)

2

(12)

where pi,j represents the usage frequency of the j-th expert, N represents the number of experts, and B
represents the batch size.

However, in our experiments, while directly usingLbl can make the usage frequencies of various experts
close to the average, it fails to achieve effective domain differentiation. Therefore, we further introduce an
entropy loss to encourage the probability of selecting a particular domain to be concentrated on a particular
expert. Our optimization goal is to ensure that the selection of experts across all domains is as average as
possible, while promoting the selection of different experts in different domains. Eq. (13) gives the specific
definition of the entropy loss in our DMoE.

Llb2 = −λ ⋅ 1
B

B
∑
i=1

N
∑
j=1

Pi , j log(Pi , j + ε) (13)

where pi,j represents the usage frequency of the j-th expert, N represents the number of experts, and B
represents the batch size.

Finally, our loss function is shown in Eq. (14):

L = LMT + α ⋅ (Llb1 +Llb2) (14)

where α represents the impact factor, which is used to control the proportion of equilibrium loss in the
total loss.

In our experiments, we found that if too much constraint is imposed on the DMoE, the expressive
power of the model will be reduced, which is not conducive to the model selecting the appropriate expert
probability distribution for each field. To alleviate this problem, as shown in Eqs. (15) and (16), we choose the
sine function as the adjustment strategy for the influencing factor, which gradually strengthens the model’s
constraint on the DMoE in the early stage, maintains stability in the middle stage, and gradually weakens the
influence in the later stage, thereby guiding the gating network to select experts in different fields, improving
the expressive power of the model, and enabling the model to adapt to complex domain characteristics.

α =max ((H − L) ⋅ sin (π ⋅ p) , L) (15)

p = t − Ts

Te − Ts
(16)

among them, H represents the maximum value of the impact factor, L represents the minimum value of the
impact factor, Ts represents the number of steps to start rising, and Te represents the number of steps to
end rising.

5 Experiment

5.1 Experimental Setup
Experimental setup to verify the effectiveness of this method in multi-domain translation tasks, this

paper uses data from the four fields of Law, Thesis, Spoken, and Science in the English-Chinese UM-
Corpus [29] dataset, and data from three fields in the English-French OPUS [30] corpus, including ECB
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data made from European Central Bank documents, the News Commentary parallel corpus provided by
WMT for training SMT, and the TED speech subtitle parallel corpus provided by CASMACA. All data were
deduplicated and character segmented. The statistics of the training set, validation set, and test set of each
dataset are shown in Table 2.

Table 2: Statistics of the en-zh UM-Corpus and en-fr OPUS corpus

Dataset Domain Train Valid Test

UM-Corpus (en-zh)

Law 217 k 1785 457
Thesis 297 k 1939 626

Spoken 217 k 1921 500
Science 267 k 1805 504

OPUS (en-fr)
ECB 172 k 1000 2000

News commentary 117 k 1000 2000
TED 146 k 1000 2000

All experiments in this paper were conducted on the open source model architecture OpenNMT
(https://github.com/OpenNMT/OpenNMT-py, accessed on 23 October 2025). To ensure the controllability
and fairness of the experiments, the batch size of all models proposed in this paper was set to 64, the word
embedding vector dimension was set to 512, the hidden layer dimension was set to 2048, the encoder and
decoder layers were both 6, and the Adam [31] optimizer was used. All comparative experiments in this
paper strictly followed the parameter settings provided in the original paper to ensure the comparability
of the results. In addition to the pre-trained model, all experiments used the Jieba tool for Chinese word
segmentation, and the default word segmentation was used for French and English. All experiments were
run on an NVIDIA RTX 4090 graphics card. Unless otherwise specified, the remaining parameters of
our experiments were kept default. To comprehensively evaluate the performance of the model, we used
BLEU [32], chrF [33], and COMET as the main evaluation indicators for all experiments. The COMET
indicator is calculated using the wmt22-comet-da model [34].

5.2 Comparative Experiment
Baseline: Baseline [28] model is obtained by training the standard Transformer model from scratch

using mixed-domain data.
Transformer-Big: Transformer-big [28] model with larger parameter capacity is obtained by training

the Transformer-big model from scratch using mixed-domain data.
Word-Level Adaptive Layer-Wise Domain Mixing (WALDM): Proposed by Jiang et al. [15], it achieves

more refined cross-domain knowledge sharing and specific domain modeling through an adaptive hierar-
chical word-level domain mixing mechanism. As a comparative experiment, we use the best-performing
model E/DC in the paper, which is a method that applies the fusion of word-level domain ratios in both the
encoder and decoder.

Learning Domain Specific Sub-Layer Latent Variable (LDSPSLV): Proposed by Huang et al. [16], this
method learns domain-specific sub-layer latent variables and uses Gumbel-Softmax reparameterization to
simultaneously train model parameters and domain-specific sub-layer latent variables, and stabilizes model
performance through pre-normalization.

https://github.com/OpenNMT/OpenNMT-py
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Domain-Aware Self-Attention (DASA): Zhang et al. [26] proposed a domain-aware self-attention
mechanism to translate sentences from different domains in a single model. Through word-level unsuper-
vised learning of the domain attention network, the model learns a joint representation of the domain and
the translation model.

MBART-50: Tang et al. [35] proposed a pre-trained cross-lingual generative model. This model
has strong cross-lingual modeling capabilities and is widely used in multi-language and multi-domain
translation tasks. Specifically, we use the mBART-50 model and fine-tune it on part of the data on the
downstream multi-domain translation task to help demonstrate the performance improvement of our
method in multi-domain translation.

Table 3 show the BLEU, chrF, and COMET results from comparative experiments on Chinese and
English datasets. The experimental results show that the models exhibit similar trends across the three
evaluation metrics, with each metric showing a simultaneous increase or decrease. Specifically, our proposed
method achieves significant improvements in BLEU scores over previous methods, with an average improve-
ment of 3.87 over the pre-trained model mBART-50. However, in terms of chrF and COMET, the average
score of mBART-50 is higher than our best model, with a 0.4 point increase in chrF and a 6.03 point increase
in COMET.

Table 3: Comparison of BLEU, chrF, and COMET results on the English–Chinese UM-corpus

Model Law Thesis Science Spoken Avg.

Baseline 51.98/64.9/
86.21

14.99/23.3/
73.98

9.78/17.9/
73.58

13.08/20.3/
75.66

22.45/31.6/
77.36

Transformer-big 56.49/67.6/
86.30

14.12/22.5/
73.36

8.84/16.9/
72.38

14.80/21.5/
75.17

23.56/32.12/
76.80

WALDM 55.92/65.9/
85.80

15.17/22.8/
73.83

9.28/16.4/
73.40

13.34/21.1/
75.90

23.42/31.55/
77.23

LDSPSLV 52.96/66.9/
85.90

14.36/23.1/
73.29

8.66/17.0/
72.47

14.15/20.8/
74.46

22.53/31.95/
76.53

DASA 47.97/63.4/
86.43

15.86/23.9/
73.85

10.13/17.8/
73.70

12.63/20.4/
75.60

21.64/31.37/
77.39

mBART-50 36.48/56.0/
89.09

19.83/31.5/
80.67

11.45/22.2/
83.21

13.82/22.9/
82.02

20.39/33.15/
83.75

Our Approach

Domain-only 57.56∗/68.2∗/
86.62∗

15.68∗/23.7∗/
74.28∗

8.86∗/17.2∗/
74.10∗

15.02∗/21.5∗
75.87∗

24.28/32.65/
77.72

Mix 57.81∗/68.9∗
86.15∗

15.09∗/23.4∗/
74.36∗

9.51∗/17.4∗/
73.30∗

14.67∗/21.3∗/
75.75∗

24.27/32.75/
77.39

Note: The bold numbers represent the best translation performance in that field. To ensure that the experimental
results in this article are not due to random factors, this study conducted a significance analysis to verify their
statistical significance and reliability. ∗ indicates p < 0.05.

The performance of mBART-50 and the method proposed in this paper on the BLEU, chrF, and COMET
indicators reflects the different dimensions of translation quality that the three evaluation indicators focus
on. Due to the differences in the calculation methods of BLEU, chrF, and COMET, the BLEU evaluation
indicator focuses more on term selection and expression accuracy, chrF emphasizes local consistency at the
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character level, and is more sensitive to word meaning replacement, synonym conversion, or word order
changes. COMET is a semantic evaluation indicator based on a neural network. It comprehensively examines
the semantic adequacy and fluency of the translation by encoding the semantic representation of the source
sentence, reference translation and system translation.

The method proposed in this paper performs well on the BLEU evaluation indicator, demonstrating its
advantages in overall translation accuracy in terms of term selection and expression accuracy. In terms of the
ChrF and COMET metrics, mBART-50 performs better, which reflects the inherent advantages of large-scale
pre-trained models in semantic representation and contextual understanding. Although the model proposed
in this paper achieves significant improvements in lexical-level precision matching, there is still room for
improvement in capturing deeper semantic consistency and fluency. Specifically, on the BLEU evaluation
metric, the improvement achieved by our method over mBART-50 is mostly in the law domain. Although
mBART-50 achieved the highest scores in thesis/science domains in comparative experiments, it was still
inferior to the Transformer baseline model in the law domain. This indicates that when the downstream tasks
of the pre-trained model differ significantly from the style of the pre-training data, fine-tuning often fails to
achieve good results. On the chrF and COMET evaluation metrics, the gap between our model and mBART-
50 on law has narrowed, allowing mBART-50 to surpass it in average chrF and COMET score. Furthermore,
its advantage on the COMET metric demonstrates that pre-trained models still have potential advantages in
capturing semantic consistency and translation fluency.

Table 4 shows the training results of the model on the Chinese-English UM-Corpus corpus. From the
perspectives of runtime speed and resource consumption, the proposed model significantly outperforms
mBART-50 in both parameter efficiency and hardware resource usage. Our model achieves similar perfor-
mance while using fewer parameters. Due to the large parameter count of approximately 610 M, mBART-50
cannot be trained with a batch size of 64 on an RTX 4090. Its video memory usage and training time are
significantly higher than those of our model. In contrast, our model has only approximately 273 M parameters
and occupies approximately 21.7 GB of video memory, allowing for stable training on the same hardware.
Furthermore, during inference, our model achieves an average inference time of only 1.10 s per batch,
compared to 3.57 s per batch for mBART-50, representing an inference speed increase of more than twofold.

Table 4: Resource usage of the model training on the Chinese and English UM-corpus

Model Training time s/epoch Inference speed
s/batch_size VRAM usage/M Parameter

Baseline 911.86 0.74 14,942 89 M
Transformer-big 959.63 1.20 19,862 266 M

WALDM 5162.62 2.52 24,140 266 M
LDSPSLV 1076.87 1.59 14,562 171 M

DASA 1076.84 1.25 18,292 99 M
mBART-50 – 3.57 – 610.9 M

Domain-only 2301.37 1.39 21,710 273 M
Domain+Sentence 2292.69 1.10 21,710 273 M

Note: Since mBART-50 cannot be trained with the same batch size (64) on RTX 4090, its training time and
memory usage results are not included in the comparative analysis to ensure experimental fairness.

Compared to the Baseline, Transformer-big, WALDM, LDSPSLV, and DASA models, the proposed
model achieves superior results in both BLEU, chrF, and COMET, with improvements of 1.83/1.15/0.36,
0.72/0.62/0.92, 0.85/0.8/0.49, 1.74/1.2/1.19, and 2.63/1.37/0.33, respectively. These experimental results
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demonstrate that the proposed method significantly outperforms the comparison methods in both specific
domains and average scores across multiple domains. While these comparison methods achieve better
scores than the baseline models in specific domains, they perform worse than the baseline models in other
domains. In terms of resource efficiency, our model achieves stable training and efficient inference under the
same hardware conditions while maintaining high translation quality and a large number of parameters. Its
inference speed is superior to WALDM (2.52 s/batch) and Transformer-big (1.20 s/batch).

Although experimental results on the English-Chinese UM-Corpus dataset show that our model
performs well in terms of translation performance and resource utilization efficiency, experiments on
this dataset alone are still insufficient to fully verify the effectiveness and generalization ability of the
model. To further evaluate the model’s generalization capabilities, we conducted further experiments on a
multi-domain English-French dataset.

Table 5 show the BLEU, chrF, and COMET metrics of our comparison models on the English-French
multi-domain translation dataset, respectively. The results show that our proposed model performs roughly
the same on the English-French corpus as on the English-Chinese corpus. Compared to the Baseline,
Transformer-big, WALDM, LDSPSLV, and DASA models, our proposed model achieves superior results in
both BLEU and chrF, with improvements of 0.55/0.34/0.42, 0.47/0.6/0.78, 0.4/0.1/0.37, 1.01/0.77/1.04, and
0.42/0.34/0.54, respectively. The results further demonstrate that our model can still achieve significant
improvements on the English-French multi-domain translation corpus, indicating that the model has good
generalization capabilities in cross-domain transfer and verifying the potential of our method in practical
multi-domain machine translation applications.

Table 5: Comparison of BLEU, chrF, and COMET results on the English-French OPUS corpus

Model Ted New Ecb Avg.
Transformer 12.4/37.8/46.24 13.34/38.1/46.67 38.32/59.9/71.35 21.35/45.26/54.75

Transformer-big 11.74/37.0/45.63 12.83/37.2/46.03 39.72/60.8/71.51 21.43/45.0/54.39
WALDM 12.05/37.8/46.52 13.15/38.1/46.63 39.42/60.6/71.24 21.54/45.5/54.80
LDSPSLV 12.00/37.4/45.62 12.84/37.2/46.08 37.96/59.9/70.68 20.93/44.83/54.13

DASA 12.03/37.6/45.92 13.18/37.8/46.47 39.34/60.4/71.50 21.52/45.26/54.63
MBART-50-zero 25.5/54.3/76.39 30.66/59.6/77.27 30.91/56.7/76.69 29.02/56.86/76.78

MBART-50 30.2/57.0/83.61 39.19/64.7/82.49 48.44/65.0/80.86 39.27/62.23/82.32

Our Approach

Domain-only 12.45∗/38.2∗/46.15∗ 13.72∗/38.0∗/47.48∗ 39.65∗/60.6∗/71.59∗ 21.94/45.6/55.07
Domain+Sentence 12.58∗/38.1∗/46.38∗ 13.66∗/38.2∗/47.52∗ 39.46∗/60.5∗/71.62∗ 21.90/45.6/55.17

Note: Bold numbers indicate the best values in this field, excluding mBART-50. To ensure that the experimental
results in this article are not due to random factors, this study conducted a significance analysis to verify their
statistical significance and reliability. ∗ indicates p < 0.05.

Notably, mBART-50 significantly outperforms other models on the OPUS English-French dataset,
even surpassing our proposed model, achieving an average BLEU score improvement of 17.33 points, and
the chrF, and COMET evaluation indicators were improved by 16.63 and 27.15 points, respectively. To
further analyze these results, we conducted a zero-shot performance evaluation of mBART-50. Despite
not using our dataset at all during training, mBART-50 achieved excellent results. Compared with our
proposed model, the average scores on the BLEU, chrF, and COMET evaluation indicators were improved
by 29.02, 11.26, and 21.62, respectively. This unusual result draws our attention. In fact, mBART-50 uses a
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large amount of OPUS language data during pre-training, and we speculate that this is the reason for its
particularly strong performance on the OPUS English-French dataset. We believe its superior performance
is primarily due to the inherent advantages of pre-trained models, including shared modeling of large-
scale multilingual knowledge, enhanced cross-lingual semantic representation capabilities, and stronger
parameter generalization. In contrast, our proposed model, which belongs to a non-pre-trained paradigm
and, while relatively faster in training and inference time, lacks large-scale multi-domain pre-training
corpora; its semantic alignment and cross-lingual transfer capabilities are relatively limited. Furthermore,
mBART-50’s model parameters and pre-training data scale far exceed those of the model used in this study.
This, in part, results in higher expressive power and more comprehensive distribution fit, explaining its
significant lead on the OPUS English-French dataset.

Comparative experiments on two corpora, as well as evaluations based on two translation quality
metrics, demonstrate the remarkable effectiveness of our proposed method in multi-domain neural machine
translation tasks. Our model achieved the best results on the English-Chinese dataset and the best results on
the English-French dataset, with the exception of mBART-50. The experimental results show that mBART-
50 performs particularly well on the OPUS English-French dataset, further validating our previous view that
when the training knowledge of the pre-trained model is highly consistent with the downstream task, the pre-
trained model can achieve excellent performance; however, when the training data of the pre-trained model
differs significantly from the downstream task, its performance on the downstream task is often limited due
to the large number of model parameters, making it difficult to achieve ideal results.

5.3 Ablation Experiments
To further explore the overall impact of our proposed module, we conducted an ablation experiment

based on English-Chinese translation. Using the standard Transformer model (Baseline) as a comparison,
we gradually introduced different submodules, including Domain-Aware Multi-Head-Attention (DAMHA),
MoE, DMoE, and their variants (Domain-only and Mixed modes). We also further investigated the impact
of different loss function designs (Lb1, Lb2, and Loss) on model performance. The experimental results are
shown in Table 6.

5.3.1 Impact of Modules on Performance
Table 6 shows the ablation test results for each module. Compared to the baseline model, the introduc-

tion of DAMHA improves BLEU by 1.63 points, ChrF by 1.17, and COMET by 0.54, demonstrating that the
domain-aware attention mechanism effectively captures domain differences and improves translation quality.
Introducing DMoE (Domain-only) or DMoE (mixed) alone only slightly improves BLEU, slightly decreases
ChrF, and remains largely unchanged on COMET, indicating that expert structures relying solely on domain
division are unable to fully model cross-domain features. Combining DAMHA with DMoE improves
BLEU by 1.83 points, ChrF by 1.05, and COMET by 0.36, validating their complementary capabilities
in domain modeling and expert selection. In both Mixed and Domain-only modes, the introduction
of DMoE outperforms the traditional MoE. Specifically, in Domain-only mode, the model adding the
DAMHA and DMoE (Domain-only) modules improves by 0.43, 0.08, and 0.17, respectively, compared to
the model adding the DAMHA and MoE (Domain-only) modules. In Mixed mode, the model adding the
DAMHA and DMoE (Mix) modules improves BLEU, ChrF, and COMET by 0.38, 0.25, and 0.25, respectively,
compared to the model adding the DAMHA and MoE (Mix) modules. These results demonstrate that,
whether in single-domain modeling or cross-domain mixed scenarios, DMoE can more fully capture domain
differences and enhance collaboration between experts, thereby achieving higher translation accuracy and
semantic consistency.
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Table 6: Ablation experiments

Model
Avg.

Bleu ΔBLEU Chrf ΔChrf Comet ΔComet
Baseline 22.45 – 31.60 – 77.36 –
+DAMHA 24.08 +1.63 32.77 +1.17 77.90 +0.54

+DMoE (Domain-only) 22.89 +0.83 30.7 −0.9 77.35 −0.01
+DAMHA+MoE (Domain-only) 23.85 +1.4 32.57 +0.97 77.55 +0.19
+DAMHA+DMoE (Domain-only) 24.28 +1.83 32.65 +1.05 77.72 +0.36
+DAMHA+DMoE (Domain-only)+Lb1 24.06 +1.61 32.47 +0.87 77.74 +0.38
+DAMHA+DMoE (Domain-only)+Lb2 23.98 +1.53 32.55 +0.95 77.87 +0.51
+DAMHA+DMoE (Domain-only)+Loss 24.02 +1.57 32.62 +1.02 77.90 +0.54

+DMoE (mix) 22.84 +0.39 31.82 +0.22 77.30 −0.06
+DAMHA+MoE (mix) 24.09 +1.64 32.65 +1.05 77.62 +0.26
+DAMHA+DMoE (mix) 24.47 +2.02 32.9 +1.3 77.87 +0.51
+DAMHA+DMoE (mix)+Lb1 24.34 +1.89 32.82 +1.22 77.59 +0.23
+DAMHA+DMoE (mix)+Lb2 24.19 +1.74 32.52 +0.92 77.61 +0.25
+DAMHA+DMoE (mix)+Loss 24.27 +1.82 32.75 +1.15 77.39 +0.03

Note: The values in the table represent the average BLEU/chrF/COMET scores across multiple domains, where
bold numbers indicate the best values.

5.3.2 Impact of Loss on Performance
As shown in Table 6, in both DMoE modes, different loss modules (Lb1, Lb2, and Loss) have a certain

impact on model performance. In the Domain-only mode, the performance change of different loss designs
is minimal compared to the domain-only mode. After adding Lb1, Lb2, and Loss, BLEU scores all decrease
slightly by approximately 0.2 to 0.3 points, and ChrF scores change within ±0.2, but COMET scores increase
by 0.02, 0.1, and 0.18, respectively. Overall, these three loss designs can slightly improve semantic consistency
while maintaining stable translation quality. In the Mix mode, different loss designs have a minimal impact
on performance. BLEU and ChrF scores decrease by approximately 0.1 to 0.3 points for all three designs, and
COMET decreases slightly by 0.3 to 0.5. Overall, the loss terms have a limited impact on translation quality,
but can further improve semantic consistency. However, the introduction of loss functions in the Mix mode
helps facilitate parameter sharing between different domains, thereby improving the overall robustness and
cross-domain generalization of the model.

6 Experimental Analysis

6.1 Model Convergence and Generalization Analysis
Fig. 3a shows the curves of accuracy and loss as the number of iterations changes during training for

our model and the comparison model. The accuracy of all three models shows a steady upward trend with
increasing iterations, with our model improving significantly faster than the baseline model. After training
for more than 10 epochs, the training accuracy of our model is approximately 5% higher than that of the
baseline model. At the same time, the training loss of all three models steadily decreases, with the decrease in
our model’s loss being more pronounced and smoother. After training for more than 10 epochs, the training
loss of our model is 2 lower than that of the baseline model.
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Figure 3: Comparison of training and validation performance (accuracy, loss, and BLEU) between the proposed model
and the baseline

Fig. 3b,c shows the changes in validation accuracy and BLEU scores over the number of training
iterations for our model and the comparison model. The overall trends are consistent with those observed on
the training set. Our model consistently outperforms the baseline model in BLEU scores on the training set,
and after sufficient training, the BLEU scores are approximately 1.2 points higher. However, the differences in
accuracy between the different models on the validation set are minimal, indicating that validation accuracy
is not a good indicator of translation quality. The reason for this is that verification accuracy is a strict metric
for word-by-word alignment, while BLEU measures the n-gram similarity of the entire translation, so the
two are often inconsistent.

6.2 Expert Activation Visualization Analysis
To further verify the model’s cross-domain parameter sharing capabilities, we visualized the activation

probability distributions of experts from different domains. Fig. 4b shows the activation probability distri-
butions of experts when domain-only information is used as the input to the DMoE gating. The activation
distribution of experts is much flatter, indicating that the gating network can more easily learn discriminative
information from domain features, thereby achieving balanced utilization of experts.

However, when using fusion domain and sentence information as input to the gating network without
applying a balanced loss function (as shown in Fig. 4a), the gating network fails and the activation probability
distribution becomes significantly unbalanced. Across different domains, almost the same expert is activated
in each layer of the DMoE, while the remaining experts are barely utilized, leading to the emergence of the
super-expert phenomenon. This activation distribution not only leaves a large number of parameters in the
model unused but also limits the model’s expressive power, affecting its robustness and generalization. On
this basis, we further introduced balanced loss into the gating network, with the results shown in Fig. 4c.
Compared to the expert activation probability distribution in Fig. 4a, the expert activation distribution
in Fig. 4c is more uniform, and all experts can be fully utilized. Although fusion information contains more
complex features, by adding loss balanced constraints to the expert activation probability distribution, all
experts can be fully utilized. Moreover, each domain has a certain difference in the activation of experts.
This activation distribution makes it easier for the model to form parameter sharing between domains when
performing domain differentiation, thereby improving the overall generalization ability of the model.
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Figure 4: Probability distribution of activating experts in different fields. This figure shows the model’s expert usage
in four domains (Law, Science, Spoken, and Thesis). The color shades reflect the activation frequency (usage) of the
experts at different layers. Darker colors indicate more frequent use of the expert in that layer or domain

6.3 Visualization of Sentence Representations Analysis
To explore the model’s domain discrimination, we used t-SNE [36] to reduce the high-dimensional

sentence vectors of the four domains to two dimensions, visualizing sentences from different domains in
the representation space. Fig. 5 compares the encoder’s ability to discriminate between different domains
between our proposed method and the baseline method. Compared to the baseline method, our proposed
method effectively identifies the domain characteristics of the input information, whether using domain-only
information or fusion information as the input to the gating network. Sentence representations from different
domains cluster in distinct regions, ensuring that information from each domain is fully represented,
demonstrating the model’s domain discrimination ability. The baseline method, on the other hand, fails to
distinguish domain information from different inputs. Language information from various domains is mixed
together, making it difficult for the model to distinguish information from each domain, which can easily
lead to domain confusion.

Figure 5: t-SNE visualization of encoder sentence representation
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7 Conclusion
This paper proposes a domain adaptation method for multi-domain neural machine translation. In

order to solve the problems of domain differentiation and cross-domain parameter sharing in multi-domain
neural machine translation, by improve the Transformer model, introducing MoE, and proposing the
Domain-Aware Multi-Head-Attention and Domain-Aware MoE modules. The former effectively enhances
the domain perception ability of the attention by introducing MoE and domain information in the attention
calculation, thereby enhancing the domain differentiation ability of the model. The latter introduces a
domain-aware gating network and activates all domain experts. By adding a loss balancing function,
it dynamically adjusts the influencing factors of the loss function to achieve refined training of model
parameters and achieve an organic balance between domain differentiation and cross-domain parameter
sharing. Comparative experiments on multi-domain neural machine translation datasets show that the
method proposed in this paper can outperform existing strong baseline models in terms of BLEU and
chrF scores. At the same time, comparative experiments on English-Chinese and English-French datasets
demonstrate the generalizability of our proposed method. Future work will further explore the adaptability
and generalization of this method in low-resource and cross-lingual scenarios, focusing on how to maintain
translation quality and parameter sharing despite data scarcity and a wide range of domains. We plan to
combine multilingual pre-trained models with strategies such as continuous learning to enhance the model’s
transferability and scalability to new languages and domains. Furthermore, we will incorporate lightweight
design techniques (such as parameter sharing, knowledge distillation, and sparse expert structures) to
optimize the model architecture, reduce parameter size and computational overhead, and thus improve
training and inference efficiency. In addition, we also plan to evaluate the feasibility of deploying this method
in actual multi-domain translation systems, thereby providing a more efficient, robust, and scalable solution
for multi-domain neural machine translation.
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