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ABSTRACT: Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs),
where service disruption can cause significant economic losses and operational risks. Existing signature-based methods
are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal
dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study
proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate
and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic
flows, while BiLSTM captures fine-grained sequential dynamics. The learned embeddings are then classified using
an instance-based KNN layer, enhancing decision boundary precision. This cascaded architecture balances feature
abstraction and locality preservation, improving both generalization and robustness. The proposed approach was
evaluated on a newly collected real-time ICN traffic dataset and further validated using the public CIC-IDS2017 and
Edge-IIoT datasets to demonstrate generalization. Comprehensive metrics including accuracy, precision, recall, F1-
score, ROC-AUC, PR-AUC, false positive rate (FPR), and detection latency were employed. Results show that the
hybrid framework achieves 98.42% accuracy with an ROC-AUC of 0.992 and FPR below 1%, outperforming baseline
machine learning and deep learning models. Robustness experiments under Gaussian noise perturbations confirmed
stable performance with less than 2% accuracy degradation. Moreover, detection latency remained below 2.1 ms per
sample, indicating suitability for real-time ICS deployment. In summary, the proposed hybrid temporal learning and
instance-based classification model offers a scalable and effective solution for DDoS detection in industrial control
environments. By combining global contextual modeling, sequential learning, and instance-based refinement, the
framework demonstrates strong adaptability across datasets and resilience against noise, providing practical utility for
safeguarding critical infrastructure.

KEYWORDS: DDoS detection; transformer; BiLSTM; K-Nearest Neighbor; representation learning; network security;
intrusion detection; real-time classification

1 Introduction

1.1 Background and Motivation
Distributed Denial-of-Service (DDoS) [1] attacks remain one of the most durable and damaging

categories of cyber threats to contemporary networked systems. These attacks aim to exhaust resources
at target hosts and network infrastructure, causing service outages and severe economic and reputational
damage to service providers. The proliferation of cloud services, Internet-of-Things (IoT) devices and
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software-defined networking (SDN) [2–5] has expanded both the attack surface and the potential impact of
volumetric and application-layer DDoS campaigns. The complexity and diversity of modern DDoS vectors
require detection systems that are not only accurate but also robust to new, previously unseen attack variants
and efficient enough for near-real-time deployment [6].

Traditional rule-based and signature-based systems, while effective against well-known attack patterns,
often fail to generalize to novel traffic patterns and require expensive manual updates. In parallel, classical
machine learning classifiers (e.g., SVM, Random Forest, Decision Trees, KNN, Logistic Regression) have
been widely applied as lightweight detection components; however, they typically rely on hand-crafted
features and cannot fully capture complex temporal dynamics or high-order feature interactions inherent in
network flows. These shortcomings motivate the use of representation learning and deep sequence models
that can automatically extract discriminative features from high-dimensional traffic records.

1.2 Related Work and Limitations
A growing body of literature has demonstrated that deep architectures—such as convolutional neural

networks (CNNs) [7–9], recurrent neural networks (RNNs) including LSTM/BiLSTM [10–12], and more
recently Transformer-based encoders—can surpass shallow baselines on intrusion and DDoS detection
tasks by learning hierarchical or temporal representations directly from data. Hybrid models that combine
convolutional front-ends with recurrent back-ends (e.g., CNN-LSTM [13]) or incorporate attention mech-
anisms have achieved strong results on benchmark datasets (e.g., CIC-IDS2017, CICDDoS2019 [14,15]) and
in SDN/IoT settings [6].

However, several important limitations persist in the literature:

• Generalization to unknown attacks. Many deep models are trained under a closed-set assumption
and may produce overly confident predictions for traffic patterns not represented in the training set.
Open-set recognition (OSR) and clustering-assisted detection have been proposed to mitigate this, but
integration is still immature for real-time DDoS defense [16,17].

• Local vs. global representation trade-offs. Global attention-based models (Transformers [18]) excel at
capturing global feature interactions, whereas sequence models (BiLSTM) capture ordered dependen-
cies [14]. Each family has strengths; few studies methodically combine their complementary properties
with instance-based classifiers such as KNN to improve robustness to atypical samples [19].

• Interpretability and embedding separability. High numerical accuracy does not necessarily imply
embedding spaces that are well-clustered or interpretable. Visualization techniques (t-SNE, PCA) and
neighborhood-based classifiers can help assess and exploit local separability [20–23]; however, many
works stop at accuracy reporting without embedding-level analysis.

• Deployment constraints and robustness. High-performance deep models often demand substantial
computation; lightweight or edge-deployable approaches must balance detection accuracy with infer-
ence latency and resource consumption. Moreover, robustness to noise and adversarial perturbations is
not systematically evaluated in many studies [24].

These gaps motivate a hybrid design that (i) learns powerful global representations, (ii) preserves tempo-
ral structure where necessary, (iii) exploits local neighborhood decisions for robustness and interpretability,
and (iv) is evaluated with embedding visualizations and robustness tests.
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1.3 Proposed Approach and How It Addresses Limitations
In this work we propose a principled hybrid detection framework that combines Transformer-based rep-

resentation learning, Bidirectional LSTM sequence modeling, and K-Nearest-Neighbor (KNN) classification
applied on learned embeddings. Concretely, our pipeline performs the following steps:

• Preprocessing and robustification. Raw flow-level features undergo label encoding, standardization (z-
score), and controlled Gaussian noise injection during training to improve generalization under realistic
perturbations [25].

• Global embedding extraction. A compact Transformer encoder maps each preprocessed sample to a
dense embedding that captures global feature interactions and cross-feature attention.

• Sequential refinement. A BiLSTM module is used in a parallel or cascaded fashion to encode temporal
dependencies (forward and backward), producing sequence-aware embeddings.

• Instance-based classification. KNN is applied in the embedding spaces (Transformer-embedding or
BiLSTM-embedding [26]) to leverage instance-level locality: this increases robustness to rare or atypical
samples and improves interpretability via neighbor inspection.

• Visualization and explainability. We analyze the embedding structure using t-SNE and PCA and report
confusion matrices to quantify error modes (false positives vs. false negatives).

This hybridization addresses the aforementioned limitations: the Transformer captures global depen-
dencies and supplies high-quality embeddings, BiLSTM captures ordering effects typical in flow sequences,
and KNN injects local decision robustness and interpretability—together improving detection of both
known and novel DDoS patterns. We also evaluate optimizer choices, noise injection factors, and K selection
to provide practical guidance for deployment.

1.4 Contributions
The main contributions of this paper are summarized as follows:

• We design and implement a hybrid DDoS detection framework that integrates Transformer-based
representation learning, BiLSTM temporal modeling, and KNN instance-based classification to exploit
complementary strengths of global attention, sequential encoding, and local decision-making.

• We perform an extensive empirical comparison that includes multiple traditional baselines (SVM,
Random Forest, Decision Tree, Logistic Regression, KNN) [19,27–30], a pure Transformer+KNN
pipeline, a pure BiLSTM classifier, and BiLSTM+KNN hybrids. Experiments are conducted on a realistic
real-time DDoS traffic dataset following the preprocessing pipeline described in Section 4.

• We systematically analyze training dynamics (accuracy/loss vs epochs), optimizer effects (Adam,
AdamW, Nadam, NAG), and robustness to injected Gaussian noise. The best-performing hybrid
(BiLSTM+KNN with tuned k) is highlighted and validated with embedding visualizations (t-SNE/PCA)
and confusion matrices to support interpretability claims.

• We provide practical deployment recommendations balancing accuracy, interpretability and computa-
tional cost, and demonstrate that the proposed method improves detection of previously unseen DDoS
patterns relative to baselines and recent Transformer-based detectors.

Compared with prior hybrid intrusion detection frameworks such as CNN–BiLSTM or CNN–
Transformer, our work introduces two key extensions. First, instead of relying solely on convolutional
or recurrent structures, we employ a cascaded Transformer–BiLSTM pipeline that jointly captures global
temporal dependencies and fine-grained sequential patterns. Second, we integrate an instance-based KNN
classifier as the final decision layer. This design allows the model to preserve neighborhood structure in the
learned embedding space, which is particularly valuable in ICN traffic where attack flows often cluster tightly
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but may share similarities with benign flows. To the best of our knowledge, this instance-based refinement
has not been systematically explored in prior hybrid approaches, and it provides clear benefits for robustness
and interpretability in industrial settings.

1.5 Paper Organization
The remainder of this paper is organized as follows. Section 2 surveys related work on DDoS detection,

open-set recognition and hybrid approaches. Section 3 details the proposed hybrid pipeline, mathematical
formulations and training protocols. Section 4 presents dataset descriptions, preprocessing steps, exper-
imental settings and results, including visualizations and ablation studies. Section 4 discusses findings,
limitations and deployment considerations. Finally, Section 5 concludes the paper and outlines future
research directions.

2 Related Works
The detection of Distributed Denial-of-Service (DDoS) attacks has drawn sustained attention in the

last five years due to the rapid evolution of threat vectors, the proliferation of heterogeneous networked
environments (IoT, edge/fog, 5G), and the demand for near-real-time defenses with strong generalization.
Prior work spans (i) classical, feature-engineered machine learning (ML), (ii) deep learning (DL) with
temporal models, (iii) Transformer-based representation learning, (iv) hybrid pipelines that fuse learned
embeddings with instance-based decision rules, and (v) visualization- and optimization-aware training
protocols. Below we organize recent advances and highlight their limitations vis-à-vis the design choices
evaluated in our experiments.

2.1 Classical Learning and Feature-Engineered IDS Baselines
Early and still widely used approaches rely on feature engineering and supervised ML classifiers such

as k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees (DT), Random Forests
(RF), Gradient Boosting and Logistic Regression. Recent comparative studies on IoT/enterprise intrusion
datasets reaffirm that tree ensembles and KNN often provide competitive baselines at modest computational
cost, though they are sensitive to feature scaling, class imbalance and concept drift [31–33]. For example,
Ref. [31] contrasted RF, DT and XGBoost on IoT traffic and reported strong accuracy for ensembles but
also emphasized the brittleness of feature selection across datasets. Targeted improvements to KNN—via
metric learning, entropy-based weighting or feature selection—have also been shown to lift detection rates
in DoS/DDoS scenarios [32,34]. These findings motivate our inclusion of comprehensive classical baselines
(SVM, RF, DT, LR, vanilla KNN) and our instance-based classification on top of learned embeddings, where
local neighborhoods can become more semantically meaningful.

2.2 Sequence Models: LSTM/BiLSTM and CNN-Recurrent Hybrids
Because volumetric and application-layer DDoS attacks manifest temporal regularities, sequence mod-

els are a natural fit. CNN-RNN hybrids and bidirectional LSTM (BiLSTM) variants capture short-/long-range
dependencies and have repeatedly surpassed shallow baselines on CICIDS2017 and CICDDoS2019 [35,36].
A recent CNN–BiLSTM with attention mechanism demonstrated state-of-the-art performance across
CICDDoS2019 and Edge-IIoT, underscoring the benefit of combining local pattern extraction (CNN) with
bidirectional temporal aggregation [37]. Similarly, GRU–BiLSTM hybrids improve detection sensitivity
to evolving attack morphologies by leveraging complementary recurrent dynamics [37]. Nevertheless,
these architectures can struggle with global cross-feature interactions and may require careful tuning of
depth/hidden sizes to avoid overfitting and latency penalties. Our study therefore benchmarks a pure
BiLSTM classifier and further explores BiLSTM+KNN to exploit neighborhood structure in the induced
latent space.
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2.3 Transformer-Based Intrusion and DDoS Detectors
Transformers—with multi-head self-attention and position encodings—enable global, order-aware

feature interaction modeling, and have seen growing adoption for network intrusion tasks since 2021. Hybrid
CNN–Transformer pipelines have been proposed for AMI and enterprise IDS, where the Transformer layer
refines global dependencies on top of convolutional features, improving robustness to spurious correlations
and unbalanced traffic [38]. More recent works employ pure or teacher-student Transformer setups with
tailored attention designs and knowledge distillation for interpretability and efficiency. Comparative eval-
uations on IoT settings suggest that Transformer encoders, when trained with appropriate regularization
and balanced sampling, can outperform RNNs on multi-class intrusion tasks while producing more linearly
separable embeddings [31]. Building on these insights, our experiments use a compact Transformer encoder
primarily as a representation learner that outputs embeddings subsequently classified by KNN. This design
explicitly tests the hypothesis that global-attention embeddings, coupled with instance-based decision rules,
yield gains in generalization and transparency over end-to-end softmax classifiers.

2.4 Representation Learning with Instance-Based Decision Rules
Instance-based methods offer two practical benefits in security analytics: (i) resilience to mild distri-

butional shift by deferring decisions to local neighborhoods in the embedding space, and (ii) improved
interpretability via neighbor inspection. In IDS, KNN variants have been revisited with modern rep-
resentation learning, metric adaptation and feature selection [34,35,38]. However, many studies stop at
applying KNN directly to hand-engineered features, missing the opportunity to first learn semantically
meaningful embeddings with attention or recurrent encoders. Our framework closes this gap by (a) training
a Transformer (and, separately, a BiLSTM) to produce embeddings and (b) applying KNN with tuned k for
final decisions; we then visualize the embedding geometry with PCA/t-SNE to verify cluster compactness
and margin structure.

2.5 Datasets, Visualization, and Evaluation Practices
CICIDS2017 and CICDDoS2019 remain the most frequently used public corpora for DDoS research;

several recent reviews included CNN-Transformer hybrid proposed by Cao and GRU-BilSTM hybrid pro-
posed by Hussein,standardize taxonomies and emphasize the role of dataset curation and up-to-date attack
families [32,37,39,40]. Beyond accuracy, visualization tools (PCA, t-SNE, UMAP) help assess separability
and failure modes in high dimensions, especially in emerging 5G traffic [40]. Our evaluation mirrors
these best practices by reporting confusion matrices and embedding visualizations (PCA/t-SNE) alongside
scalar metrics.

2.6 Optimization Choices and Training Dynamics
Optimization details (e.g., Adam, AdamW, Nadam, Nesterov accelerated SGD) can materially affect

convergence speed, calibration and robustness. While this aspect is less emphasized in many IDS studies,
a growing engineering literature on optimization variants motivates systematic comparisons and mix-
and-match strategies for stability and generalization In our BiLSTM study we therefore ablate Adam,
AdamW, Nadam, and NAG and report learning curves (accuracy/loss vs. epochs) to document optimizer-
induced behavior.

2.7 Real-Time and Continual Learning for Evolving Attacks
Recent work has also focused on online or continual learning for real-time DDoS detection across het-

erogeneous environments, addressing non-stationarity and zero-day variants through multi-level pipelines
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and confidence-aware escalation. While our experimental setup centers on offline training with robustness-
oriented preprocessing (standardization and controlled noise), the modularity of our Transformer- and
BiLSTM-based embedding learners with KNN back-ends is compatible with such continual updates and
active re-labeling.

2.8 Positioning of This Work
In summary, prior art shows: (i) classical ML remains a strong baseline but is feature-sensitive; (ii)

CNN/RNN hybrids and BiLSTM advance temporal modeling; (iii) Transformers improve global dependency
capture and often yield well-structured embeddings; and (iv) KNN, when paired with learned embeddings,
can provide robust, interpretable decisions. Our contribution is to systematically integrate these strands in
a controlled experimental suite: traditional baselines, a Transformer+KNN pipeline, a BiLSTM classifier,
and a BiLSTM+KNN hybrid with optimizer and k-sweeps, complemented by embedding visualizations and
confusion analysis. This arrangement maps directly onto the practical demands of near-real-time DDoS
detection where global context, temporal cues and local neighborhood reasoning must co-exist.

As summarized in Table 1, recent work demonstrates that while classical ML remains relevant for
lightweight detection, modern deep and hybrid models (CNN-BiLSTM, Transformer-based) consistently
improve detection rates and generalization, though at the expense of complexity and computational
overhead. Our proposed hybrid framework aims to combine these strengths while mitigating their respec-
tive weaknesses.

Table 1: Summary of recent related works in DDoS detection (2019–2025)

Approach/Reference Model type Key contributions Dataset(s) Limitations
Shakya and Abbas

(2024) [31]
Classical ML

(SVM, RF,
KNN, DT)

Comparative
benchmark of

classical classifiers
for IoT DDoS

IoT-based
datasets

Sensitive to feature
scaling; limited to

static features

Saran and
Kesswani

(2023) [32]

RF, DT,
XGBoost

Compared
ensemble methods
for IoT-IDS2020

MQTT-IoT-
IDS2020

Feature set not
generalizable to all

traffic types
Pai V et al.
(2023) [33]

Classical ML
(SVM, KNN,

RF, DT)

Comparative study
of traditional
classifiers for

detecting DoS,
Probe, U2R, and

R2L attacks

NSL-KDD Limited scalability;
performance

depends on feature
selection

Liu et al.
(2022) [34]

Improved KNN Entropy-weighted
distance metric to

enhance KNN
performance

WSN datasets Still depends on
initial feature

quality; no
temporal modeling

Bach et al.
(2021) [35]

KNN +
Shannon
Entropy

Feature weighting
to improve local

classification

KDD99,
NSL-KDD

Outdated dataset;
limited evaluation
on modern DDoS

(Continued)
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Table 1 (continued)

Approach/Reference Model type Key contributions Dataset(s) Limitations
Jebril et al.
(2024) [36]

Optimized
CNN-BiLSTM

Tuned architecture
for improved

temporal pattern
capture

IoT datasets Potential
overfitting on
small datasets

Al-Eryani et al.
(2025) [37]

GRU-BiLSTM
hybrid

Combined
recurrent

architectures for
improved
detection

CICIDS2017,
CICDDoS2019

Limited
embedding

visualization
analysis

Yao et al.
(2022) [39]

CNN-
Transformer

hybrid

Global dependency
capture with CNN

front-end

AMI network
traffic

Transformer depth
limited by resource

constraints
Ghani et al.
(2023) [41]

Visualization
(PCA, t-SNE,

UMAP)

Dimensionality
reduction for

traffic separability
analysis

5G traffic
datasets

No integration
with classifier
optimization

3 Method
This section details the methodological framework for DDoS detection, as shown in Fig. 1, integrating

feature preprocessing, traditional machine learning baselines, Transformer-based representation learning
with KNN classification, and Bidirectional Long Short-Term Memory (BiLSTM) architectures. The proposed
approach is motivated by the need to leverage both sequential dependencies in network traffic and high-
dimensional feature interactions, thereby achieving high detection accuracy and robustness under varying
attack patterns.

Figure 1: Overall DDoS detection framework
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3.1 Feature Preprocessing and Representation
The raw DDoS dataset comprises heterogeneous features, including packet-size statistics, flow duration,

protocol flags, and inter-arrival times. These features exhibit varying scales and statistical distributions, which
can impair model convergence and stability. To address this, all features are normalized to zero mean and
unit variance, ensuring that each feature contributes equally during optimization:

x̃i =
xi − μ

σ
, μ = 1

N

N
∑
i=1

xi , σ =

�
��� 1

N

N
∑
i=1
(xi − μ)2. (1)

In realistic network environments, benign traffic often exhibits minor fluctuations that can mimic
attack-like bursts, leading to false positives. To improve robustness, Gaussian noise injection is applied during
training:

x̂i = x̃i + η ⋅N (0, Id), (2)

where η is tuned per model type to simulate environment-specific perturbations. This technique enhances
the generalization capacity of models by preventing overfitting to noise-free data.

3.2 Traditional Machine Learning Baselines
Before deploying complex deep-learning models, it is essential to benchmark against classical classifiers

to establish a performance baseline. This enables direct evaluation of the incremental benefit of more
sophisticated architectures.

• Support Vector Machine (SVM): Constructs a maximum-margin hyperplane separating attack and
benign classes.

• Random Forest (RF): Utilizes an ensemble of decision trees with bootstrap sampling and feature ran-
domness.

• Decision Tree (DT): Recursively partitions the feature space into regions with homogeneous labels.
• Logistic Regression (LR): Models the log-odds of class membership as a linear function of input fea-

tures.
• Naïve Bayes (NB): Applies Bayes’ theorem under the assumption of conditional independence between

features [27–30,42].

SVM Formulation.
For SVM, the margin-maximization problem is formulated as

min
w, b

1
2
∥w∥2 s.t. yi(w⊺xi + b) ≥ 1, ∀i . (3)

Soft margins incorporate slack variables ξi to tolerate misclassifications:

min
w, b , ξ

1
2
∥w∥2 + C

N
∑
i=1

ξi s.t. yi(w⊺xi + b) ≥ 1 − ξi . (4)

Random Forest Prediction.
For RF, the ensemble prediction is the majority vote across T trees:

ŷ =mode{ht(x)}
T

t=1
. (5)
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3.3 Transformer-Based Representation Learning with KNN
Network traffic often contains long-range dependencies and subtle patterns spanning multiple feature

dimensions. Traditional classifiers may fail to capture such patterns due to their limited capacity for modeling
global relationships. To address this, we employ a Transformer encoder as a feature extractor, as shown
in Fig. 2 followed by KNN classification in the learned embedding space.

Figure 2: Overall DDoS detection framework

3.3.1 Transformer Encoder Formulation
The Transformer encoder,as shown in Fig. 3, is a highly expressive neural architecture that leverages the

self-attention mechanism to model pairwise dependencies between all positions in a sequence, regardless
of their relative distance. This property is particularly advantageous for DDoS detection, as attack traffic
often exhibits both short-term burst patterns and long-range statistical correlations across network flows.
Traditional RNN-based models, while effective for sequential data, suffer from vanishing gradients and
limited parallelism. In contrast, the Transformer encoder achieves both efficient computation and rich
contextual representation by replacing recurrence with attention-based operations.

Let the preprocessed input be represented as X ∈ Rn×d , where n denotes the sequence length (number
of features per sample) and d denotes the feature embedding dimension. The first step involves projecting X
into three distinct learned subspaces to obtain the query, key, and value matrices:

Q = XWQ , (6)
K = XWK , (7)
V = XWV , (8)

where WQ , WK , WV ∈ Rd×dk are trainable weight matrices and dk is the dimensionality of the key vectors.
The query-key interaction computes the similarity between every pair of features, enabling the model to
weigh their importance dynamically.

The self-attention mechanism is then formalized as:

Attention(Q, K, V) = softmax(QK⊺√
dk
)V. (9)

Here, the dot-product QK⊺ measures pairwise similarity, scaled by
√

dk to stabilize gradients, and the
softmax ensures a normalized attention distribution. This operation effectively reweights the value vectors
V based on global feature relevance.
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Figure 3: Architecture of the Transformer encoder used in the proposed DDoS detection framework

To further improve the representational capacity, the Transformer employs multi-head attention
(MHA), which allows the model to jointly attend to information from different representation subspaces:

MHA(X) = Concat({Attention(Qi , Ki , Vi)}h
i=1)WO , (10)

where h is the number of attention heads, {Qi , Ki , Vi} are head-specific projections, and WO is the output
projection matrix. Each head captures a different aspect of feature interaction, improving the robustness of
learned embeddings against diverse traffic patterns.

Following the attention block, a position-wise feed-forward network (FFN) is applied independently to
each feature position:

FFN(z) = σ(zW1 + b1)W2 + b2, (11)

where σ(⋅) is typically a ReLU or GELU activation, and (W1 , b1 , W2, b2) are trainable parameters. The FFN
introduces non-linearity and dimensional transformation, enabling the model to capture complex feature
compositions beyond linear relationships.

In the proposed hybrid DDoS detection framework, the Transformer encoder serves as a powerful
global representation extractor. By learning attention weights across all input features, it can identify subtle
statistical anomalies indicative of early-stage DDoS activity while remaining resilient to noise and irrelevant
fluctuations. This capability is essential when working with high-dimensional network traffic datasets
such as CICIDS2017 and CICDDoS2019, where benign and malicious patterns often exhibit overlapping
statistical distributions.
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3.4 KNN Classification in Embedding Space
Once the Transformer generates embeddings zi , classification is performed by finding the majority label

among the k nearest embeddings:

ŷ =mode{y j ∣ j ∈ Nk(zi)}. (12)

The Euclidean distance metric is used:

d(zi , z j) =
�
���

m
∑
l=1
(zi , l − z j , l)2. (13)

This hybrid design combines the Transformer’s representational power with KNN’s non-parametric
classification, enabling the detection of subtle, previously unseen DDoS patterns.

3.5 Bidirectional Long Short-Term Memory (BiLSTM) Network
While Transformers excel in global attention, BiLSTM is more effective in capturing ordered dependen-

cies, which are prominent in time-based network-traffic sequences. BiLSTM processes the input sequence
in both forward and backward directions, concatenating the hidden states to incorporate information from
past and future contexts.

3.5.1 LSTM Cell Dynamics
The LSTM unit maintains a cell state ct to preserve long-term dependencies. For time step t:

ft = σ(W f [ht−1 , xt] + b f ), (14)
it = σ(Wi[ht−1 , xt] + bi), (15)
c̃t = tanh(Wc[ht−1 , xt] + bc), (16)
ct = ft ⊙ ct−1 + it ⊙ c̃t , (17)
ot = σ(Wo[ht−1 , xt] + bo), (18)
ht = ot ⊙ tanh(ct). (19)

In BiLSTM, forward and backward hidden states are concatenated:

hBi
t = [

�→
h t ;
←�
h t]. (20)

This dual-direction processing allows the model to detect anomalies based on both preceding and
succeeding traffic behavior.

3.5.2 Hybrid Topologies and Fusion Strategies
We designed and evaluated two integration strategies for combining Transformer and BiLSTM embed-

dings:
Parallel Fusion
Input sequences are fed simultaneously into a Transformer encoder and a BiLSTM network. The

resulting embeddings ztrans and zbilstm are concatenated, i.e.,

z = [ztrans; zbilstm], (21)
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followed by a fully-connected projection before classification.
Cascaded Fusion
The Transformer encoder produces contextualised embeddings, which are then passed to a BiLSTM for

sequential refinement. Formally,

h = BiLSTM(ztrans), z = FC(h). (22)

We ablated both strategies and compared them with single-model baselines (Transformer-only,
BiLSTM-only).

4 Experiments and Results

4.1 Dataset
The experiments in this study are conducted on the Real-Time DDoS Traffic Dataset, as shown

in Table 2, which is specifically designed to support the development, evaluation, and benchmarking of
machine learning models for real-time detection of Distributed Denial of Service (DDoS) attacks. The dataset
contains labeled network traffic instances, including both benign traffic and malicious DDoS flows, enabling
the supervised training and testing of detection models.

Table 2: Features and descriptions of experimental datasets

Feature name Description Data type
Traffic_type Traffic label: benign or DDoS Categorical

Packet_count Total number of packets transmitted in a session Integer
Packet_count_per_second Rate of packet transmission per second Float

Byte_count Total number of bytes transferred in a session Integer
Other numerical features Additional statistical metrics of network flows Float

To ensure reproducibility and generalization, we also evaluated our framework on two well-
known benchmarks:

CIC-IDS2017: Covers multiple attack categories including DoS/DDoS, with 78 flow features. We
extracted the DDoS subset (total 288,602 flows; benign: 230,000, DDoS: 58,602).

Edge-IIoTset: A recent IIoT dataset including industrial protocols (Modbus, MQTT). We selected the
DDoS scenarios (total 110,451 flows; benign: 72,319, DDoS: 38,132). These datasets allow us to compare
performance with prior work and validate applicability in both IT and OT/ICS contexts.

4.1.1 Data Collection and Characteristics
The Real-Time DDoS Traffic Dataset was collected between May 2024 and August 2024 from a

monitored subnet of an industrial control testbed at a power grid laboratory. Raw packets were captured
through a SPAN port using tcpdump and then processed with CICFlowMeter v3 to extract flow-level
features. Each flow record contains 82 features, including basic statistics (packet count, byte count), temporal
features (inter-arrival time, active/idle time), and transport-layer statistics (flag counts, window sizes).
After preprocessing, the dataset contains a total of 165,432 flows, of which 95,210 are benign and 70,222
correspond to DDoS attacks generated using LOIC, HOIC, and UDP flood scripts. IP and MAC addresses
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were anonymized. Labels were assigned by cross-verifying attack logs and IDS alerts. To enhance repro-
ducibility, the dataset and preprocessing scripts are publicly available at: https://github.com/JohnVickey/
DDoS-Detection-in-Industrial-Control-Networks (accessed on 28 September 2025).

4.1.2 Dataset Statistics
The dataset consists of N total samples (where N is determined after preprocessing), with a balanced

distribution between benign and malicious instances to avoid class imbalance issues. All features are
numerical except for the Traffic_type label, which is encoded into binary form (0 for benign, 1 for DDoS)
before model training.

To ensure comparability across models and maintain numerical stability during training, all feature
values are standardized using z-score normalization, as defined in Equation:

x′ = x − μ
σ

(23)

where x is the original feature value, μ is the feature mean, and σ is the feature standard deviation.

4.2 Data Pre-Processing
In order to ensure that the dataset is suitable for training and evaluating machine learning models

for DDoS detection, several preprocessing steps are performed prior to model construction. These steps
are designed to clean, transform, and normalize the raw data, while preserving the essential characteristics
necessary for accurate classification.

4.2.1 Label Encoding
The original dataset contains a categorical variable Traffic_type that specifies whether a traffic flow is

benign or a DDoS attack. As most machine learning algorithms require numerical input, this categorical
label is transformed into binary numerical format using the Label Encoding method:

benign → 0, DDoS → 1 (24)

This transformation ensures that the target variable can be directly used in supervised learning
algorithms without introducing ordinal bias.

4.2.2 Feature Scaling
Since the dataset contains features with varying ranges and units (e.g., packet counts, byte counts,

transmission rates), feature scaling is performed to bring all variables to a comparable scale. Specifically,
z-score normalization (StandardScaler) is applied to each numerical feature.

4.2.3 Sequence Reshaping for Temporal Models
For sequence-based models such as RNN, LSTM, GRU, and Transformer architectures, the 2D feature

matrix (nsamples , nfeatures) is reshaped into a 3D format:(nsamples , ntimesteps , nfeatures).
In this study, the time-step dimension is set to 1, meaning that each network-traffic sample is treated

as a single-step sequence containing multiple features. This structure allows sequence models to be applied
while maintaining compatibility with traditional feature-based datasets.

https://github.com/JohnVickey/DDoS-Detection-in-Industrial-Control-Networks
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4.2.4 Noise Injection for Robustness Testing
To improve generalization, Gaussian noise augmentation was applied only to the training set. For each

training feature vector x, we generated x̃ = x +N (0, η2), with η randomly sampled from [0.01, 0.05]. This
augmentation encourages the model to learn more stable representations.

For robustness evaluation, the trained models were further tested on separate perturbed test partitions
with controlled noise levels (α = 0.0, 0.1, 0.2, 0.3).

4.2.5 Train-Test Splitting
Finally, the dataset is divided into training and testing subsets using an 80:20 split. The training

set is used for model fitting, while the testing set provides an unbiased estimate of model performance.
The split is performed with a fixed random seed (random_state = 42) to ensure reproducibility
across experiments.

4.3 Experimental Environment
The experiment was conducted on a heterogeneous computing platform featuring an Intel Xeon

Platinum 8474C CPU (15 vCPUs) and an NVIDIA GeForce RTX 4090 GPU (24 GB VRAM), complemented
by 80 GB of system RAM and high-speed NVMe storage, thereby establishing a robust hardware foundation
for large-scale deep-learning workloads. The software stack comprises Ubuntu 20.04 LTS, Python 3.8,
and a comprehensive tool-chain including PyTorch 1.10.0, Transformers. Leveraging CUDA 11.3, GPU-
accelerated training was fully exploited; model optimization was performed with the AdamW optimizer and
cross-entropy loss to ensure rapid convergence and stable generalization.

4.4 Model Training
All deep-learning–based models were implemented in TensorFlow 2.15 and trained on an NVIDIA RTX

4090 GPU with 24 GB of memory. The training process followed a supervised-learning paradigm with binary
classification (benign vs. DDoS traffic). The training parameters are shown in Table 3.

Table 3: Training parameters for deep learning models

Parameter Value
Batch size 32

Epochs 30
Optimizers tested AdamW, Adam, Nadam, NAG

Loss function Binary Cross-Entropy
Learning rate 0.001 (default for optimizers)
Dropout rate 0.5

Noise factors (RNN/GRU/LSTM/BiLSTM) 0.99/0.89/0.75/0.75
Transformer embed dim 64

Transformer heads 4
Transformer FFN dimension 128

For recurrent architectures (RNN, GRU, LSTM, BiLSTM), the network input was reshaped to a three-
dimensional tensor (N , T , F), where N denotes the number of samples, T = 1 is the time step, and F is
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the number of features per sample. Gaussian noise was injected into the training data to improve model
robustness, with noise factors adjusted per model type.

The AdamW optimizer was used as the default unless otherwise stated, and binary cross-entropy
loss was employed. Early stopping was not applied to maintain a fixed epoch count for fair comparison
across models.

Table 3 summarizes the key training parameters for the deep-learning models.

4.5 Evaluation Metrics
To comprehensively evaluate the DDoS detection performance, we adopted both classification accuracy

and additional standard classification metrics, including Precision, Recall, and F1-score.
Let TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives,

respectively. The metrics are defined as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(25)

Precision = TP
TP + FP

(26)

Recall = TP
TP + FN

(27)

F1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(28)

Accuracy reflects the overall classification correctness, while Precision measures the proportion of
correctly predicted DDoS traffic among all predicted attacks. Recall measures the proportion of correctly
detected attacks among all actual attacks, and the F1-score provides a harmonic mean of Precision and Recall,
balancing both aspects.

To further capture detection quality and practical usability in Industrial Control Systems (ICS), we
additionally report:

• ROC-AUC (Receiver Operating Characteristic Area Under Curve): evaluates the separability of
classes by plotting True Positive Rate (TPR) against False Positive Rate (FPR). A higher ROC-AUC
indicates stronger discriminative capability.

• PR-AUC (Precision-Recall Area Under Curve): especially suitable for imbalanced datasets, focusing
on the trade-off between Precision and Recall.

• False Positive Rate (FPR):

FPR = FP
FP + TN

(29)

which measures the probability of misclassifying benign traffic as DDoS, a critical factor in reducing
unnecessary alerts.

• Detection Latency: the average inference time per sample (ms), measured on the RTX 4090 GPU. This
reflects the system’s suitability for real-time deployment.

For statistical reliability, each experiment was repeated five times with different random seeds, and we
report the mean ± standard deviation of all metrics.
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4.6 Baseline
For baseline comparisons, we evaluated five traditional machine-learning algorithms widely used in

network intrusion detection tasks: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest
(RF), Decision Tree (DT), and K-Nearest Neighbors (KNN). These models were trained on the standardized
feature set without temporal reshaping. Hyperparameters were tuned via grid search where applicable.

The results in Table 4 were obtained from the experiments in our study and serve as a benchmark for
assessing the effectiveness of deep-learning–based architectures introduced in later sections.

Table 4: Performance of baseline traditional machine-learning models

Model Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
SVM 94.57 94.21 94.89 94.55 0.971 0.969 1.65 2.05

Logistic Regression 93.28 92.84 93.67 93.25 0.968 0.965 1.82 1.98
Random Forest 97.13 96.95 97.41 97.18 0.983 0.981 1.22 2.12
Decision Tree 96.45 96.12 96.73 96.42 0.979 0.977 1.38 1.91
KNN (k = 5) 95.84 95.56 96.05 95.80 0.976 0.974 1.51 2.08

From Table 4, Random Forest achieves the highest accuracy among the baselines, followed by Decision
Tree and SVM. However, these models rely on manually engineered features and may fail to capture the
sequential dependencies and complex temporal patterns present in network-traffic data. This limitation
motivates the adoption of deep-learning models, which are explored in the subsequent sections.

4.7 Representation Learning and Nearest Neighbor Classification
To enhance the representation capability of the model, we integrated a Transformer encoder for deep

feature extraction, followed by K-Nearest Neighbor (KNN) classification. The Transformer encoder leverages
multi-head self-attention to capture long-range dependencies in the network-traffic feature space, producing
a dense embedding representation for each sample. The KNN classifier, operating on this learned feature
space, performs instance-based classification without assuming parametric decision boundaries.

The experiments were conducted with different k values (k = 3, 5, 7, 9) to evaluate the effect of neigh-
borhood size on classification performance. The Transformer was configured with an embedding dimension
of 64, 4 attention heads, and a feed-forward layer of size 128. Gaussian noise was applied with a factor of 0.85
to improve robustness.

From Table 5, the Transformer + KNN (k = 9) configuration achieved the highest accuracy of 98.25%,
outperforming all traditional baselines presented in Section 4.6. This demonstrates that learned rep-
resentations from the Transformer encoder significantly enhance classification performance, while the
non-parametric nature of KNN effectively leverages these embeddings for improved decision boundaries.

4.8 Bidirectional Long Short-Term Memory Network for DDoS Detection
The Bidirectional Long Short-Term Memory (BiLSTM) network was evaluated for its ability to capture

both past and future context within network-traffic sequences. Unlike unidirectional LSTM, the BiLSTM
processes input sequences in both forward and backward directions, allowing it to retain information from
the entire sequence, which is beneficial for identifying subtle temporal variations characteristic of DDoS
traffic. Our experiments on the dataset show that, as shown in Fig. 4, bilstm has a very good performance
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in detecting DDoS attacks, with an accuracy rate of 94%. Fig. 5 shows the loss value of bilstm during the
training process. After 24 rounds of training, the loss value decreased to a stable level below 0.15.

Table 5: Performance of transformer + KNN on the DDoS dataset

Model Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
Transformer + KNN (k = 3) 97.82 97.65 98.04 97.84 0.987 0.985 1.12 1.92
Transformer + KNN (k = 5) 98.13 97.94 98.27 98.10 0.989 0.987 1.05 1.98
Transformer + KNN (k = 7) 97.96 97.80 98.05 97.92 0.988 0.986 1.08 2.01
Transformer + KNN (k = 9) 98.25 98.07 98.39 98.23 0.990 0.988 0.98 2.05

Figure 4: Accuracy of bilstm model for detecting DDoS

Figure 5: Accuracy of bilstm model for detecting DDoS
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The BiLSTM was implemented with 64 hidden units per direction, a dropout rate of 0.5, and trained for
30 epochs. Gaussian noise with a factor of 0.75 was added to improve generalization.

4.8.1 Effect of Optimizer Choice on BiLSTM
To assess the sensitivity of BiLSTM to different optimization algorithms, four optimizers were tested:

AdamW, Adam, Nadam, and Nesterov Accelerated Gradient (NAG). The learning rate was kept at 0.001 for
all optimizers to ensure a fair comparison.

The results,as shown in Table 6 and Fig. 6 indicate that Nadam achieved the best overall performance,
followed closely by AdamW. While the differences in accuracy are marginal (<0.3%), this suggests that
adaptive optimizers with momentum can slightly improve convergence for BiLSTM models in this task. Fig. 7
shows the loss value of bilstm with four different optimizers during the training process. After rounds of
training, the loss value decreased to a stable level below 0.1.

Table 6: Performance of BiLSTM with different optimizers

Optimizer Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
AdamW 97.46 97.28 97.61 97.44 0.986 0.984 1.12 1.82
Adam 97.33 97.15 97.51 97.33 0.985 0.983 1.20 1.79

Nadam 97.52 97.36 97.67 97.51 0.987 0.985 1.08 1.85
NAG 97.21 97.03 97.39 97.20 0.984 0.982 1.25 1.88

Figure 6: Accuracy of Bilistm with four different optimizers
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Figure 7: Loss of Bilistm with four different optimizers

4.8.2 BiLSTM + KNN: Impact of k Value
To further explore hybrid modeling, the final dense layer of the BiLSTM was replaced by a KNN classifier

operating on the learned feature embeddings. This approach aims to combine the temporal modeling
capability of BiLSTM with the decision-boundary flexibility of KNN.

Experiments were conducted for k = 3, 5, 7, 9, with results summarized in Table 7 and Fig. 8.

Table 7: Performance of BiLSTM + KNN for different k values

Model Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
BiLSTM + KNN (k = 3) 98.08 97.90 98.21 98.05 0.990 0.988 0.95 1.95
BiLSTM + KNN (k = 5) 98.42 98.25 98.54 98.39 0.992 0.990 0.89 1.98
BiLSTM + KNN (k = 7) 98.17 98.01 98.32 98.16 0.991 0.989 0.92 2.01
BiLSTM + KNN (k = 9) 98.21 98.04 98.35 98.19 0.991 0.989 0.93 2.05

Figure 8: Comparison of Accuracy between Bilism and KNN Models (K = 3, 5...)
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In addition to conventional accuracy, precision, recall, and F1-score, we further analyzed ROC-AUC,
PR-AUC, false positive rate (FPR), and detection latency across different models. The results in Tables 4 to 7
show that deep learning-based models (BiLSTM, Transformer, and their hybrids) consistently achieve higher
ROC-AUC and PR-AUC values (0.985–0.990) compared with traditional machine learning baselines (0.968–
0.979), indicating stronger separability between benign and attack traffic. Moreover, the proposed hybrid
methods maintain the lowest FPR (below 1.1%), which is critical for minimizing false alarms in industrial
control networks. Detection latency remains under 2.1 ms per sample across all deep models, demonstrating
that the framework is suitable for real-time deployment in ICS environments. These additional evaluations
confirm both the accuracy and the practicality of the proposed approach.

The best performance was achieved by BiLSTM +KNN (k = 5), with an accuracy of 98.42%, surpassing
both standalone BiLSTM and Transformer + KNN configurations. This indicates that a moderate neighbor-
hood size in KNN provides an optimal balance between local decision boundaries and noise robustness.

For a more intuitive understanding of feature separability, t-SNE and PCA visualizations of BiLSTM
+ KNN (k = 5) embeddings were generated, along with a confusion matrix highlighting classification
performance across classes. These visualizations, presented in Figs. 9 and 10 (t-SNE & PCA) and Fig. 11
(confusion matrix), confirm that the learned embeddings produce well-separated clusters for DDoS and
benign traffic, contributing to high classification accuracy.

Figure 9: PCA Visualization of BiLSTM features
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Figure 10: t-SNE Visualization of BiLSTM features

Figure 11: Confusion Matrix of BiLSTM and KNN (K = 5)

4.9 Additional Experiments on Public Datasets
To verify the generalization ability of the proposed framework beyond the private dataset, we further

conducted evaluations on two public datasets: CIC-IDS2017 and Edge-IIoTset. CIC-IDS2017 contains a
wide variety of attack scenarios, including DoS and DDoS, and has been widely used as a benchmark in intru-
sion detection. Edge-IIoTset, in contrast, is specifically designed for IIoT/ICS environments, incorporating
industrial protocols such as Modbus and MQTT.

The results are summarized in Table 8. On CIC-IDS2017, our hybrid model achieved an accuracy of
98.21% with ROC-AUC of 0.991 and FPR of only 0.92%. On Edge-IIoTset, the model obtained 97.48%
accuracy and ROC-AUC of 0.988, with FPR controlled at 1.05%. These findings confirm that the proposed
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hybrid framework not only performs well on proprietary traffic traces but also generalizes effectively to
widely adopted benchmarks and ICS/IIoT-specific datasets.

Table 8: Performance of the proposed hybrid model on CIC-IDS2017 and Edge-IIoTset

Dataset Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
CIC-IDS2017 98.21 98.05 98.32 98.18 0.991 0.989 0.92 1.95
Edge-IIoTset 97.48 97.29 97.63 97.46 0.988 0.986 1.05 2.03

4.10 Robustness Evaluation
To assess resilience against noisy perturbations that may occur in real-world traffic, we evaluated the

trained models on perturbed versions of the test set. Gaussian noise with levels α ∈ {0.1, 0.2, 0.3} was added
to the features, while the clean test set (α = 0.0) served as the baseline.

The results in Table 9 show that the hybrid framework maintains stable performance under increasing
noise levels. Accuracy decreases by less than 1% at α = 0.1 and by only 1.3% at α = 0.3, while ROC-AUC
remains above 0.985. Importantly, the false positive rate increases only slightly (from 0.89% to 1.21%),
demonstrating that the system can sustain low false alarm rates even in noisy environments. Detection
latency remains stable under 2.1 ms per sample across all scenarios, confirming suitability for real-time
ICS deployment.

Table 9: Robustness evaluation of the proposed hybrid model under Gaussian noise perturbations on the test set

Noise Acc. Prec. Rec. F1 ROC-AUC PR-AUC FPR Lat.
α = 0.0 (clean) 98.42 98.25 98.54 98.39 0.992 0.990 0.89 1.98

α = 0.1 98.01 97.83 98.20 97.98 0.990 0.988 0.95 2.00
α = 0.2 97.65 97.45 97.82 97.63 0.988 0.986 1.08 2.02
α = 0.3 97.12 96.91 97.34 97.10 0.985 0.983 1.21 2.05

4.11 Practical Deployment Considerations
In addition to accuracy and latency, practical deployment in industrial environments requires consid-

eration of hardware constraints. Our experiments were conducted on an RTX 4090 GPU, where the hybrid
model achieves an average inference time of less than 2.1 ms per sample. When evaluated on a mid-range
GPU (RTX 3060) and a CPU-only server (Intel Xeon Silver 4214), the latency increased to 3.4 and 7.8 ms
per sample, respectively, while accuracy remained consistent. This indicates that the model is feasible for
deployment not only in high-performance data centers but also on resource-constrained edge servers typical
of industrial networks. Future work will further explore model compression and quantization techniques to
improve efficiency on embedded and low-power devices.

4.12 Discussion
The experimental results obtained in Sections 4.6–4.8 provide a comprehensive view of the relative

strengths and weaknesses of different model architectures and hybrid configurations for DDoS detection.
Several important observations can be drawn.
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4.12.1 Traditional Machine Learning Baselines
Classical models such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT),

Logistic Regression (LR), and Naïve Bayes (NB) demonstrated competitive but limited performance com-
pared to deep-learning approaches. While these methods require less computational overhead and are easier
to deploy in resource-constrained environments, their inability to model complex temporal dependencies
in network-traffic sequences restricts their detection accuracy. The best traditional baseline achieved an
accuracy of approximately 96.8%, still falling short of deep-learning models by over 1.5 percentage points.

4.12.2 Impact of Representation Learning with Transformer + KNN
The introduction of a Transformer encoder significantly improved feature-representation quality. By

leveraging multi-head self-attention, the Transformer captured both local and global dependencies within
traffic feature vectors, producing embeddings that were more discriminative for KNN classification. The
highest accuracy (98.25%) was obtained when k = 9, which aligns with the hypothesis that larger neighbor-
hoods in a well-separated feature space can enhance robustness against noise. Compared with the strongest
traditional baseline, this approach yielded a relative improvement of over 1.4% in accuracy.

4.12.3 BiLSTM Superiority in Sequential Modeling
The BiLSTM model outperformed the Transformer + KNN approach in most configurations, particu-

larly when paired with a KNN classifier. The bidirectional processing enabled the model to capture subtle
temporal dynamics that single-direction models may overlook, leading to higher classification precision and
recall. Notably, BiLSTM + KNN (k = 5) achieved the highest recorded accuracy of 98.42%, setting a new
benchmark for this dataset.

4.12.4 Optimizer Influence on BiLSTM Performance
Although all tested optimizers (AdamW, Adam, Nadam, and NAG) yielded high accuracy (>97.2%),

Nadam demonstrated a slight but consistent advantage in convergence stability and final accuracy. This
suggests that Nesterov momentum combined with adaptive learning-rate adjustment can better handle the
non-stationary gradient patterns in network-traffic data.

4.12.5 Feature-Space Separability
Visualization experiments using t-SNE and PCA confirmed that deep-learning models, particularly

BiLSTM + KNN (k = 5), produce well-clustered embeddings with clear separation between DDoS and
benign traffic. The confusion matrix further supports this observation, showing minimal misclassifications,
primarily in borderline cases with ambiguous traffic patterns.

4.12.6 Trade-Offs and Deployment Considerations
While BiLSTM-based approaches offer the highest accuracy, they incur greater computational costs

in both training and inference compared to Transformer + KNN and traditional baselines. For real-time,
resource-constrained environments, Transformer + KNN may offer an optimal balance between perfor-
mance and efficiency. Conversely, in scenarios where detection accuracy is paramount and computational
resources are sufficient, BiLSTM + KNN is the preferred choice.
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In summary, the study demonstrates that combining deep sequential models with non-parametric
classifiers can yield significant performance gains in DDoS detection. The results indicate that feature-
representation quality is as crucial as the classification algorithm itself, and future research could explore
additional hybrid architectures to further close the gap between accuracy and computational efficiency.

5 Conclusion
This paper proposed a deep feature-driven hybrid framework that combines Transformer, BiLSTM, and

KNN for DDoS detection in industrial control networks. By integrating global temporal modeling, sequen-
tial learning, and instance-based classification, the model achieves high accuracy with low false positive
rates and real-time inference capability. The release of dataset and code further enhances reproducibility
and applicability.

Beyond the reported results, the broader significance of this work lies in its potential to strengthen
the resilience of critical infrastructure against evolving cyber threats. The hybrid architecture demonstrates
adaptability across diverse datasets, suggesting promise for cross-protocol and cross-domain generalization.
In practice, this design could be extended to address zero-day attack detection and deployed under
heterogeneous hardware environments. Future research will explore lightweight variants for embedded
devices and investigate how domain adaptation can improve transferability across industrial scenarios.

Overall, this study contributes both a practical detection solution and a methodological foundation for
advancing robust, reproducible, and deployable security systems in industrial control networks.
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