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ABSTRACT: This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data
in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated
learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed
storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service,
and federated coordination layers. It accommodates both multimodal data classification and object detection tasks,
enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while
ensuring privacy protection. This effectively mitigates the single-point failures and model leakage issues inherent in
centralized architectures. A dynamically adjustable differential privacy mechanism is introduced to allocate privacy
budgets according to client contribution levels and upload frequencies, achieving a personalized balance between model
performance and privacy protection. Multi-dimensional experimental evaluations, including classification accuracy,
F1-score, encryption latency, and aggregation latency, verify the security and efficiency of the proposed architecture.
The improved CNN model achieves 72.34% accuracy and an F1-score of 0.72 in object detection and classification
tasks on infrared surveillance imagery, effectively identifying typical risk events such as not wearing safety helmets
and unauthorized intrusion, while maintaining an aggregation latency of only 1.58 s and a query latency of 80.79 ms.
Compared with traditional static differential privacy and centralized approaches, the proposed method demonstrates
significant advantages in accuracy, latency, and security, providing a new technical paradigm for efficient, secure data
sharing, object detection, and privacy preservation in smart grid substations.
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1 Introduction
As critical nodes in smart grids, substations generate multimodal operational data including equipment

condition monitoring streams, power load profiles, and inspection imagery [1,2]. These data types serve as
determining factors for real-time dispatch and condition-based maintenance while simultaneously encom-
passing the confidentiality of physical infrastructure topologies and consumer electricity usage patterns [3].
Notably, spatial characteristics within the data potentially revealing equipment lay-outs through infrared
thermography containing geolocation coordinates-introduce additional privacy vulnerabilities [4,5]. Any
leakage during transmission could enable targeted attacks on critical power facilities, jeopardizing the
secure and stable operation of power systems [6]. Consequently, establishing a multimodal data privacy
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preservation framework for substations holds paramount significance for ensuring power system security
and advancing next-generation grid infrastructure, representing a mission-critical technology for intelligent
substation implementation.

Existing substation data privacy preservation technologies predominantly rely on data anonymization
and centralized federated learning [7,8]. Traditional anonymization solutions are prone to the curse of
dimensionality when handling the high-dimensional spatiotemporal correlations inherent in substation
multimodal data, resulting in excessive noise injection that drastically degrades data utility while remaining
vulnerable to adversarial attacks exposing sensitive information [9]. The centralized architecture of conven-
tional federated learning aggregates global model parameters on a single server, creating systemic privacy
leakage risks from model inversion attacks and parameter theft [10,11]. Furthermore, its synchronous update
mechanism requires plaintext gradient transmission, amplifies privacy exposure through spatiotemporal
correlation inference based on substation operational characteristics. These limitations necessitate a decen-
tralized privacy-preserving federated framework that incorporates asynchronous collaboration mechanisms
and multimodal differential perturbation to address the spatiotemporal correlation challenges inherent
in substation data, thereby ensuring comprehensive privacy protection. However, existing applications of
AFL in smart grid scenarios still face several critical challenges. First, most AFL methods rely on static or
uniform differential privacy strategies, lacking personalized privacy-utility trade-off regulation mechanisms.
Second, the asynchronous nature of AFL can easily trigger consistency and robustness issues during global
aggregation without centralized coordination. Furthermore, existing research rarely addresses the system-
level feasibility of real-world smart grid deployments, exhibiting insufficient attention to the design and
validation of trusted collaboration and scalable storage mechanisms among substations.

Current research focuses on integrating blockchain with differential privacy techniques in the power
grid domain to address privacy protection and fair exchange issues in data sharing. Fotiou et al. [12] proposed
a privacy-preserving statistics marketplace based on local differential privacy and blockchain. This scheme
protects data providers’ privacy using local differential privacy technology and utilizes blockchain smart
contracts to achieve fair exchange and immutable data log recording. It is applicable to smart grid measure-
ment data sharing scenarios, demonstrating feasibility through experimental validation for scales involving
hundreds or even thousands of data providers. Zheng et al. [13] proposed a decentralized mechanism called
DDP based on differential privacy for privacy-preserving computation in smart grid, which extends data
sanitization from value domain to time domain by injecting Laplace noise distributively and using random
permutation to shuffle measurement sequences, thus enforcing differential privacy and preventing sensitive
power usage mode inference, with experiments demonstrating its outstanding performance in privacy and
utility. Fan et al. [14] proposed a decentralized privacy-preserving data aggregation (DPPDA) scheme for the
smart grid based on blockchain. The scheme uses the leader election algorithm to select a smart meter in the
residential area as a mining node to build a block, and the node adopts the Paillier cryptosystem algorithm
to aggregate user power consumption data. Meanwhile, Boneh-Lynn-Shacham short signature and SHA-256
function are applied to ensure the confidentiality and integrity of user data. Security analysis shows that
the scheme meets the security and privacy requirements of smart grid data aggregation, and experimental
results demonstrate that it is more efficient than existing competing schemes in terms of computation and
communication overhead.

Asynchronous federated learning, with its unique decentralized architecture and efficient asynchronous
parameter exchange mechanisms, can adapt to the diverse computing capabilities of substation edge devices
and fluctuations in network environments, while effectively avoiding single-point failure risks inherent in
centralized architectures [15,16]. This technology opens a feasible path for ensuring multimodal data privacy
security in substations. In recent years, some scholars have introduced asynchronous federated learning into
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power systems to achieve distributed model training under data privacy protection. Li et al. [17] innovatively
proposed a decentralized asynchronous adaptive federated learning algorithm that focuses on secure
prediction of distributed power data, making the prediction process of distributed data more flexible, secure,
and reliable. Simultaneously, Liu et al. [18] proposed a novel asynchronous decentralized federated learning
framework. Under this framework, each photovoltaic power station can not only independently train local
models but also actively participate in collaborative fault diagnosis through model parameter exchange. This
method significantly improves the model’s generalization capability while ensuring diagnostic accuracy. The
global model is formed through distributed aggregation, effectively avoiding potential failures in central
nodes and substantially reducing communication overhead and training time. Experimental and numerical
simulation results fully verify the effectiveness and practicality of this method. Wu et al. [19] designed a
privacy-preserving federated learning framework for transformer fault diagnosis that incorporates multi-
level data sharing mechanisms and adaptive differential privacy protection measures. Experimental results
demonstrate that this method exhibits outstanding diagnostic accuracy in identifying different types of
transformer faults. Beyond power systems, recent studies have further explored federated learning in other
critical infrastructures. For instance, federated learning has been applied to intrusion detection, enabling
collaborative anomaly detection across distributed networks without exposing raw data, which demonstrates
its strong potential in network security [20,21]. In addition, conditional generative adversarial networks
have been combined with federated learning in satellite–terrestrial integrated networks, providing secure
and efficient cross-domain data generation and model training [22,23]. These works highlight the broad
applicability of federated learning across different domains, while our study specifically addresses the
privacy-preserving challenges in smart grid substations by integrating asynchronous federated learning with
blockchain and dynamic differential privacy mechanisms.

Although numerous studies have been conducted on federated learning and privacy protection, the
following limitations persist: most existing research focuses on synchronous federated learning frameworks,
which struggle to adapt to the asynchronous distributed characteristics of substation environments; secondly,
differential privacy often employs fixed budgets, failing to account for contribution disparities among differ-
ent clients, thereby compromising model utility; finally, while blockchain and storage integration primarily
emphasize data integrity and traceability, they lack deep integration with differential privacy mechanisms.

To address the privacy leakage risks facing substation data and the challenge of decentralized
trust establishment, this paper proposes a three-layer privacy-preserving architecture for substation data
based on asynchronous federated learning. Compared to certain fully decentralized federated learning
approaches, AFL maintains a degree of decentralization while achieving higher communication efficiency
and stronger fault tolerance. This makes it particularly well-suited for substation environments characterized
by imbalanced computational resources and inconsistent communication quality among nodes. Further-
more, through the integration of PBFT consensus mechanisms and smart contracts, AFL in this study
simultaneously addresses collaborative security and decentralized training efficiency, representing a practical
deployment solution under current grid system constraints. The contributions of this work are summarized
as follows:

(1) A three-layer model architecture for privacy-preserving substation data is proposed, leveraging asyn-
chronous federated learning. This architecture comprises a storage layer, service layer, and federated
collaboration layer, achieving substation data privacy preservation through decentralized implemen-
tation. The framework employs blockchain to ensure data immutability, enhances off-chain storage
efficiency via the IPFS, and resolves the single point failure issues inherent in traditional centralized
federated learning.
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(2) A differential privacy mechanism based on dynamic noise-tuning is proposed. During model training,
Laplace noise is innovatively added to intermediate results to optimize differential privacy protection
effectiveness. By dynamically adjusting noise injection strategies, the mechanism balances model
performance and privacy strength while protecting sensitive parameter confidentiality. Experimental
verification demonstrates its significant reduction of parameter leakage risks.

(3) An asynchronous federated aggregation method integrating PBFT and smart contract collaboration
is proposed. The PBFT consensus algorithm ensures parameter consistency among distributed nodes
and resists malicious node attacks. By leveraging smart contracts to automatically execute model
aggregation logic, this method significantly addresses the centralization dependency and data trust
storage issues in traditional federated learning.

2 Related Work

2.1 Asynchronous Federated Learning
In Asynchronous Federated Learning, the server prioritizes collaboration with clients that have com-

pleted training without waiting for all clients to finish training before aggregation [24]. When a client
completes its training, it immediately communicates with the server to obtain the latest global model and
then initiates the next round of local training. The advantages are that no client remains idle, and the global
model can promptly integrate the latest local model parameters uploaded by clients [25]. However, there are
also drawbacks: the communication strategy causes a significant increase in data transmission volume since
each client must communicate individually with the server; clients with limited computational capabilities
have longer local training cycles, during which the global model may have undergone multiple updates
through interactions with computationally powerful clients, resulting in weaker clients using outdated
global models uploading these parameters may degrade global model quality [26]; frequent communication
between the server and powerful clients may lead to model bias. Fig. 1 illustrates the basic process of
asynchronous federated learning.

Figure 1: Fundamental workflow of asynchronous federated learning

Asynchronous Federated Learning (FedAsync) [27] is a classical asynchronous federated learning
algorithm. Compared with synchronous federated learning, a key distinction of asynchronous federated
learning lies in its avoidance of global synchronization locks to schedule device operations. The pseudocode
is as follows (Algorithm 1):



Comput Mater Contin. 2026;86(3):35 5

Algorithm 1: FedAsync algorithm
Process Server:
1: Initialize global parameters w0, at ← a
2: Asynchronously run Scheduler() threads Updater() threads at the same time
Thread Scheduler():
3: Periodically triggers a subset of clients and sends them the timestamped global model
Thread Updater():
4: For epoch t ∈ [T] do
5: Receiving information from the client (xnew , r)
6: Optional
7: Linear: sa (t − r) = 1

a (t − r) + 1
8: Polynomial: sa (t − r) = (t − r + 1)−a

9: Exponential: sa (t − r) = exp (−a (t − r))
10: Hinge: sa ,b (t − r) = 1, & if t − r ≤ bl at − r − b + 1

ohterwise i f Hinge
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 t − r ≤ b
1

a (t − r − b) + 1
otherwise

11: at ← a × s (⋅), s (⋅) is a function of staleness
12: xt ← (1 − at) xt−1 + at xnew
Process Client():
13: For i ∈ [N] in parallel do
14: If triggered by scheduler() then
15: Receive timestamped global models from the server s (xt , t)

2.2 Differential Privacy
The core concept of differential privacy lies in enhancing privacy protection by adding differentially

private noise to the model’s raw gradients [28]. The Laplace mechanism is a canonical implementation
of differential privacy, operating by injecting Laplacian-distributed random noise offsets to all data when
generating target outputs [29]. The relevant definitions are as follows:

(1) Neighboring Datasets: For any two adjacent datasets D and D′, given a random mechanism M
algorithm operating on these adjacent datasets, when the inequality holds, S is the subset of all possible
outputs generated by the M mechanism.

pr [M (D) S] ≤ eε pr [M (D′) S] . (1)

Through the random mechanism M, ε−differential privacy is satisfied, where the parameter ε is the
privacy protection budget. A smaller ε value indicates a higher privacy protection strength.

(2) Global Sensitivity: For a query function f ∶N∣x ∣ → R
k , the global sensitivity is defined over any two

neighboring datasets D and D′ as:

Δs ( f , ∥●∥) = max
d(D ,D′)=1∥ f (D) − f (D′)∥ , (2)

where ∥●∥ denotes the distance metric, typically implemented using l1-norm or l2-norm.
(3) Laplace Mechanism: This mechanism achieves ε−differential privacy by adding Laplace-distributed

noise to query results. For any query function f ∶N∣x ∣ → R
k with global sensitivity Δs, the Laplace
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mechanism is defined as:

Ml ((x , f (●) , ∈)) = f (x) + (Y1 + Y2 ⋅ ⋅⋅, Yk) . (3)

The Laplace mechanism satisfies the ε−differential privacy protection mechanism. Specifically, Yi ∼
Lap ( Δs

ε ) are independently distributed random variables.

2.3 Blockchain
Blockchain technology establishes a distributed ledger system where information storage is achieved

through chronologically ordered blocks [30]. Each block contains a finite set of transaction records,
cryptographically linked to its predecessor via hash pointers, thereby forming an immutable chained
architecture [31]. The structural configuration of blockchain is depicted in Fig. 2.

Figure 2: Blockchain architecture diagram

Within the blockchain technology framework, smart contracts serve as indispensable components that
autonomously execute predefined rules and agreements upon condition fulfillment. The execution outcomes
are immutably recorded on the blockchain network as tamper-evident and irreversible transaction records,
requiring no external entity intervention. The flexibility of smart contracts manifests in their programma-
bility through various programming languages to accommodate complex business logic requirements.

Consensus mechanisms constitute the core technology enabling coordinated operations among dis-
tributed nodes to maintain data consistency [32]. Given blockchain’s decentralized nature, reliance on
centralized authorities for transaction validation becomes infeasible. Consensus protocols thus play a
pivotal role in ensuring all network nodes maintain identical ledger replicas with accurately recorded
transactions [33]. As foundational elements of blockchain systems, these mechanisms effectively resolve the
Byzantine Generals Problem in distributed environments.
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2.4 IPFS
IPFS constitutes a decentralized peer-to-peer network for distributed file storage and sharing, designed

to establish a unified file system integrating global computing resources [34]. By employing content-based
addressing-where each file is uniquely identified and retrieved via cryptographic hash identifiers-IPFS
enhances data reliability and accessibility through distributed storage [35].

IPFS’s decentralized architecture inherently aligns with the decentralized storage requirements for
substation privacy protection. Through encrypted sharding and hash verification mechanisms, this approach
effectively mitigates leakage risks associated with centralized sensitive data storage while ensuring data
integrity and traceability, thereby providing foundational support for high-reliability, privacy-first data
sharing in smart grid systems. However, practical deployment may face challenges: IPFS could introduce
model upload and indexing delays during cross-substation synchronization, while blockchain platforms may
encounter throughput bottlenecks under high-frequency model submissions. Future work should integrate
off-chain computation to asynchronously process model validation and aggregation, enhancing system
scalability and practicality.

3 Method

3.1 AFL Substation Data Privacy Protection System Framework
The proposed asynchronous federated learning model for substation data privacy consists of three

layers, as shown in Fig. 3. The storage layer employs IPFS for secure off-chain data storage, complementing
blockchain to enhance decentralization; the service layer handles operational workflows with local model
training, blockchain-audited processes, and certificate-based authentication; while the federated collab-
oration layer orchestrates cross-substation model training using blockchain and smart contracts, which
aggregate local models to update global parameters-achieving privacy-preserving optimization through
decentralized synchronization.

The model assumes there are n substations, with each substation Si (i = 1, 2, ⋅ ⋅ ⋅, n) possessing its dataset
Di . Each substation trains a local model mi on its local dataset Di , then uploads the model. Through smart
contracts in the federated collaboration layer, global model M is aggregated. Each substation subsequently
retrains a new local model m′i based on the global model M, uploads it again, and generates an updated
global model M′, iterating this process until model convergence.

This framework employs the PBFT consensus algorithm for model aggregation, leveraging its high
fault tolerance to rigorously validate client parameters before aggregation-mitigating malicious nodes while
ensuring stringent data consistency beyond lightweight alternatives. For decentralized security, substations
register on-chain, encrypt data via ECC for dual on/off-chain storage, and utilize smart contracts for global
model aggregation. This dual mechanism eliminates central server reliance, prevents tampering, and secures
both data privacy and training processes.
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Figure 3: Asynchronous federated learning-based system model for substation data privacy preservation

3.2 AFL Processes for Substations
Within the substation data privacy framework, AFL enables decentralized model training as shown

in Fig. 4. Authenticated substations sign/store data on IPFS, receiving unique hashes which are digitally
signed and uploaded to the blockchain; following on-chain verification and broadcast, each substation
retrieves initial parameters from the federation layer, trains local models using its dataset, uploads models to
global nodes, and invokes smart contracts for parameter aggregation, generating an updated global model
whose parameters are stored on-chain and synchronized across all substations; this process iterates from local
retraining until model convergence, with IPFS handling distributed storage, blockchain recording metadata,
and smart contracts executing aggregation.

To address client training inconsistencies in AFL, the system implements an asynchronous aggregation
trigger and integrates directional consistency verification within PBFT consensus-applying penalizing
weighting to clients whose parameters persistently deviate from the global optimization direction, thereby
enhancing model stability.
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Figure 4: Asynchronous federated learning workflow for substations

3.3 Dynamically Tuned Differential Privacy Mechanism
To resolve temporal inconsistencies in asynchronous federated learning that challenge uniform DP, this

paper proposes a dynamic DP mechanism. This approach jointly optimizes privacy granularity through:
(1) A server-side DP budget allocation system using contribution factors and upload frequency factors to
dynamically assign client-specific budgets; and (2) Client-level adaptive perturbation intensity adjustment
collectively enabling balanced privacy protection and model performance despite update heterogeneity.

After the server receives the perturbed gradient g̃(t)
i uploaded by client i, it calculates the cosine

similarity between the gradient and the global model update direction as the current round’s contribution
factor:

v(t)
i = 1 + cos (g̃(t)

i , Δw(t)) (4)

where the model parameter change Δw(t) is defined as:

Δw(t) = w(t) −w(t−1) (5)

The training round index is denoted by t, and Δw(t) represents the model parameter changes in the
t-th round. The expectation of v(t)

i follows the von Mises distribution approximation: E [v(t)
i ] ≈ 1 + e−σ 2 t ,

where σ 2 quantifies data distribution divergence among clients. This indicates higher contribution weights
(v(t)

i → 2) in early training stages and convergence to equilibrium (v(t)
i → 1) as t increases. To mitigate the
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impact of anomalous fluctuations in individual rounds, a moving average method is employed to calculate
the historical average contribution factor:

vi ← β ⋅ vi + (1 − β) ⋅ v(t)
i (6)

where vi indicates the historical average contribution factor for client i, and β ∈ (0, 1) denotes the smoothing
coefficient. Such a contribution-based adaptive allocation mechanism is, in essence, a form of adaptive
filtering strategy. This approach aligns closely with the defensive effects and improvement directions revealed
in existing studies on adaptive aggregation against model poisoning attacks [36]. Simultaneously, an upload
frequency factor ϕi is introduced to quantify the client’s model update frequency within a specific timeframe.
The privacy budget for the next training round is dynamically configured as:

ε(t+1)
i = εbase ⋅

1 − vi

1 + ϕi
(7)

where εbase represents the foundational privacy budget. When vi is large, the client’s updates have a more
significant impact on the global model, and the privacy risk is higher. Therefore, the budget should be
reduced to enhance noise protection. When ϕi is high, the privacy loss accumulates rapidly due to the
composition effect. Thus, the per-round budget should also be reduced to maintain the overall constraint.
This mechanism aligns with the sensitivity control principle and the composition theorem of differential
privacy. When a client exhibits substantial training contributions, heightened privacy protection becomes
imperative; consequently, its allocated budget should be reduced. Conversely, frequent model uploads by a
client amplify its influence over the global model. This dynamic differential privacy allocation inherently
introduces a randomization effect, which aligns with existing research demonstrating that randomized
aggregation helps defend against model poisoning attacks [37]. To ensure global (ε, 0) − DP, the base budget
εbase is constrained by:

εbase =
ε

n ⋅ Tmax ⋅ k′
, k = E = [max

j
( 1 − vi

1 + ϕi
)] (8)

This mechanism achieves personalized privacy protection and rational resource allocation by
dynamically adjusting budget distribution according to client behavioral characteristics. The server-side
asynchronous differential privacy budget control algorithm is described as follows (Algorithm 2).

Algorithm 2: Server-side budget control process
Input: Total privacy budget ε, Client set, Moving average coefficient β, Max rounds Tmax
Output: Dynamic privacy budget εi for each client
1: Initialize model parameters w0, set base budget εbase = ε/ (n ⋅ Tmax ⋅ k)
2: Initialize for each client i:vi = 1, upload frequency count ϕi = 0
3: After client uploads perturbed gradient g̃(t)

i
(1) Calculate model variation: Δw(t) = w(t) −w(t−1)

(2) Compute contribution factor: v(t)
i = 1 + cos (g̃(t)

i , Δw(t))
(3) Update historical contribution: vi ← β ⋅ vi + (1 − β) ⋅ v(t)

i
(4) Update upload frequency: ϕi ← ϕi + 1
(5) Calculate next-round budget: ε(t+1)

i = εbase ⋅ 1−v i
1+ϕi

(6) Aggregate perturbed gradients and update model: w(t) ← w(t) ⋅ η ⋅ g̃(t)
i
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Differential privacy aggregation logic processes verified client gradients via clipping, noise injection
(base budget ε = 0.1), and weighted averaging. Using smoothing coefficient β = 0.8 updates clients’ historical
contribution factors, mitigating single-round anomalies while preserving trend responsiveness. Privacy
budget initialization (vi = 1) ensures fairness; dynamic adjustments based on historical contributions and
update frequency subsequently occur, with contribution factors initialized as ϕi = 0 and iteratively refined
via client-submitted model updates to govern ongoing allocations. Clients receive global parameters w(t) and
current budget ε(t)

i for local training—yielding raw gradients ∇w(t)
i , while implementing adaptive clipping

thresholds based on precision feedback to match local convergence speed.
The client first records the current gradient norm:

Gt = ∥∇w(t)
i ∥

2
(9)

A historical norm collection G = {C0, G1 , ⋅ ⋅ ⋅, Gt} is maintained, which records historical gradient
norms and initial clipping thresholds. The gradient clipping threshold Ct is dynamically updated via a
Quantil e (⋅) function, utilizing the median of the historical gradient norms G as the quantization metric.
Concurrently, the validation accuracy qt plays a pivotal role in this update process. The updated cutting
threshold as:

Ct = Quantil e (G , Median) × (1 + λ (1 − qt)) (10)

where λ = log Tmax√
Tmax

is a convergence-optimal decay factor ensuring limt→Tmax Ct = Median (G). The local
validation accuracy qt ∈ [0, 1] serves as utility feedback: when qt → 1, Ct relaxes to retain more gradient
information; when qt → 0, Ct tightens to control sensitivity. The clipping operation is executed as:

g(t)
i =

∇w(t)
i

max(1,
∥∇w(t)

i ∥2
Ct

)
(11)

This step bounds the L2 sensitivity: ΔS = supD ,D′ ∥gi (D) − gi (D′)∥2 ≤ 2Ct for adjacent datasets D, D′.
Adding Laplace Noise:

g̃(t)
i = g(t)

i + Lapl ace
⎛
⎝

0, 2Ct

ε(t)
i

⎞
⎠

(12)

Finally, the client uploads the perturbed gradients to the server for participation in global model
updating. The client-side gradient clipping and noise perturbation algorithm are described as follows
(Algorithm 3).
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Algorithm 3: Client-side gradient clipping and noise perturbation

Input: Model parameters w(t), privacy budget ε(t)
i , initial threshold C0

Output: Perturbed gradient g(t)
i

1: Initialize gradient norm collection: G ← {C0}
2: Train local model to obtain gradient ∇w(t)

i

3: Compute norm: Gt = ∥∇w(t)
i ∥

2
4: validation accuracy qt , update clipping value: Ct = Quantil e (G , Median) × (1 + λ (1 − qt))
5: Clip gradient: g(t)

i = ∇w(t)
i

max
⎛
⎜
⎝

1,
∥∇w(t)

i ∥
2

Ct

⎞
⎟
⎠

6: Add Laplace noise: g̃(t)
i = g(t)

i + Lapl ace (0, 2Ct

ε(t)
i
)

7: Upload g̃(t)
i to the server for global model updating

On the client side (Algorithm 3), both local clipping and noise injection operations have a complexity
of O (d), and the communication complexity for uploading the perturbed gradient is also O (d). On the
server side (Algorithm 2), each round requires aggregating gradients uploaded by n clients, resulting in a
computational complexity of O (nd), along with one global noise injection step of complexity O (d). In
terms of communication, the server needs to distribute and receive n vectors, leading to a communication
complexity of O (nd). Therefore, the per-round computational complexity is O (nd), and the per-round
communication complexity is O (nd). If the global training runs for T rounds, the overall overhead is
O (T ⋅ nd).

3.4 PBFT and Smart Contract-Coordinated Asynchronous Federated Aggregation
3.4.1 PBFT Consensus Algorithm Construction

The PBFT consensus algorithm demonstrates superior scalability, enabling sustained high-efficiency
operation amid expanding substation node quantities and complex environments—delivering robust secu-
rity for reliable substation data interactions. The consensus process of the algorithm is detailed in Fig. 5.

Figure 5: PBFT algorithm
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Within the PBFT consensus framework, the primary node initiates aggregation proposals while replicas
validate requests. If the primary consecutively fails to broadcast valid proposals, the system automatically
triggers rotation—promoting the next designated replica. Nodes transmitting falsified digests or demon-
strating persistent unresponsiveness are excluded to prevent Byzantine attacks from compromising global
aggregation. The contract layer enforces response timeouts and rotation logic, maintaining robustness with
a tolerance limit of f < N−1

3 faulty substations.

3.4.2 Smart Contract Design
Solidity-implemented smart contracts encode PBFT consensus logic to interface with substation devices

via Go, facilitating bidirectional blockchain interactions: devices upload immutable operational data to
the chain and autonomously adjust states based on PBFT-validated instructions. Upon meeting response
thresholds or time limits, contracts trigger on-chain aggregation—executing parameter averaging using
stored digests, then broadcast updated global models through event mechanisms. This entirely decentralized
workflow ensures tamper-resistant ordering and autonomous contract execution for asynchronous federated
learning. The asynchronous federated learning aggregation algorithm is detailed as follows (Algorithm 4).

Algorithm 4: Asynchronous federated learning aggregation
Input: Number of substations n, Local models m′i , Waiting time T , Threshold waiting time T ′
Output: New global model M′

1: Each substation uploads its local model M′
2: When the number of substations n reaches the required threshold or the waiting time T ≥ T′, the

local models m′i re-averaged to obtain the new global model M′
3: The new global model M′ is uploaded to the blockchain through consensus
4: End

4 Experiments
This study employs a power grid-provided dataset comprising 5000 infrared surveillance units (4000

static images, 100 video clips of 5–30 s duration) collected from 5 distinct substations (1000 units per
substation). Due to the limited number of infrared image samples, this study employed random data
augmentation techniques (flipping, rotation, scaling, etc.) during training to expand the effective sample
size; meanwhile, the risks of overfitting were mitigated through multi-client federated aggregation and the
regularization effect of differential privacy noise. Video key frames are extracted as image sequences to
capture spatiotemporal behavior patterns. CNN is selected as the foundational model for its superior spatial
feature extraction capability in identifying local structural variations within infrared imagery, aligning with
technical objectives while enabling industrial-grade deployment.

All samples undergo preprocessing/normalization with multi-category annotation: 3200 normal behav-
ior instances, 800 unauthorized entry, 600 illegal operation, and 400 not wearing a safety helmet,
demonstrating a controlled class imbalance that aligns with real-world substation operational profiles.

The PBFT consensus was deployed on a testbed consisting of 5 substation nodes. Each node operated
on industrial-grade hardware. The blockchain platform utilized Hyperledger Fabric 2.4 with a block size
of 1 MB and transaction throughput capped at 350 TPS. Network latency was emulated using Linux
Traffic Control to simulate WAN conditions. The CNN architecture comprises two convolutional layers
(30 channels for low-level feature extraction, 80 channels for high-level spatial feature capture) followed by
five fully connected layers. Optimized for substation data characteristics and task requirements, pooling
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layers enhance robustness and computational efficiency through dimensionality reduction, while fully con-
nected layers integrate convolutional features to refine classification performance. This network efficiently
processes substation multi-modal data, achieving an optimal balance between computational efficiency and
classification accuracy, as shown in Fig. 6. Model performance and privacy preservation were evaluated using
accuracy, loss, and F1-score metrics.

Figure 6: Improved CNN architecture schematic

4.1 Analysis of Key Performance Indicators of the Model
The proposed asynchronous federated learning model initially employs a baseline CNN architecture for

training, achieving an accuracy of 49.03%, an F1-score of 0.486, and a loss of 1.49. As shown in Fig. 7, the
experimental results demonstrate suboptimal model performance prior to architectural optimization.

(a) (b) (c)

Figure 7: Performance metrics of the baseline CNN architecture. (a) Model accuracy; (b) Confusion matrix; (c) Model
loss

Building upon the original CNN architecture, an enhanced CNN model was developed with the
application of data augmentation techniques to improve the diversity of the training dataset. For learning
rate scheduling, the Cosine Annealing Learning Rate Scheduler was employed to dynamically adjust learning
rates, enabling smoother model convergence. Additionally, early stopping and regularization methods were
incorporated during the training process. To evaluate the enhanced CNN architecture, a comparative
analysis was conducted against a baseline model. This baseline model was trained on an identical dataset
encompassing the multi-modal information from substations utilized for the enhanced model. Furthermore,
an equivalent number of training epochs was applied to both models during the training process. The
experimental results are presented in Fig. 8.

The experimental results demonstrate that the enhanced model achieves an accuracy of 72.34%, an
F1-score of 0.72, and a loss of 0.89, representing significant improvements over the baseline CNN model.
Comparative metrics of the original and enhanced models are summarized in Table 1.
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(a) (b) (c)

Figure 8: Performance metrics of the improved CNN architecture. (a) Model accuracy; (b) Confusion matrix;
(c) Model loss

Table 1: Model comparison

Evaluation indicators Accuracy Loss F1
Original model 48.97% 1.49 0.486

Improved 72.34% 0.89 0.72

4.2 Privacy-Preserving Data Encryption and Model Aggregation Performance Analysis
To validate the efficiency of data encryption and successful decryption post-encryption, datasets ranging

from 100 to 500 samples were encrypted using the SM2 algorithm. The encryption time was measured
for each dataset size, with test results shown in Fig. 9. Empirical results demonstrate that encryption time
increases proportionally with data volume, exhibiting a linear growth trend as the dataset size escalates.

Figure 9: Data encryption delay

Subsequently, the aggregation-to-chain latency and query latency were tested to evaluate the effec-
tiveness of the asynchronous federated learning model aggregation. Each test round comprised 30 trials.
The aggregation-to-chain latency results are depicted in Fig. 10a. Experimental results indicate an average
aggregation-to-chain latency of 1.58 s. Furthermore, query latency tests were conducted on the aggregated
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on-chain data, as shown in Fig. 10b. The results demonstrate an average query latency of 80.79 ms, confirming
the model’s capability to meet substation requirements for data aggregation and query operations.

(a) (b)

Figure 10: Model aggregation performance benchmarking. (a) Aggregation-to-Chain latency; (b) Query latency

4.3 Numerical Results of Dynamic Noise Tuned Differential Privacy Mechanism
To ensure a rigorously fair comparison between the proposed dynamic differential privacy mechanism

and the static uniform noise-injection approach, both schemes were allocated an identical privacy budget
(ε = 0.1), thereby ensuring equivalent privacy protection levels. The experimental results are illustrated
in Fig. 11, the dynamic mechanism demonstrates consistent superiority across multiple performance dimen-
sions. It not only attained a higher final accuracy of 72.34% compared to approximately 68.1% for the static
method, but also achieved a lower loss value of 0.89 and a superior F1-score of 0.72. These improvements
are attributed to the mechanism’s ability to adaptively modulate noise injection based on each client’s
contribution level and update frequency, effectively preserving informative gradients from reliable clients
while suppressing potentially disruptive updates from unreliable or malicious participants. In contrast, the
static uniform noise scheme introduces unmodulated interference across all updates, impairing the learning
process and resulting in slower convergence and reduced stability. Furthermore, the dynamic approach pro-
motes more consistent convergence behavior and enhances robustness against potential poisoning attacks,
underscoring its practical utility in real-world federated learning scenarios such as substation monitoring.

Fig. 12 comprehensively quantifies the impact of privacy budget ε on federated learning systems. The
privacy budget ε in this study is set within the range of [0.01, 1.0] not to recommend the direct use of
ε = 1.0 in practical deployment, but to systematically characterize the complete spectrum of the privacy-
utility trade-off. This range quantitatively reveals the impact trajectory of different privacy budgets on
model performance: as ε increases, the noise amplitude decreases, model accuracy gradually improves, loss
decreases, and convergence accelerates. Notably, experimental results indicate that ε = 1.0 represents a critical
balancing point in this task: while maintaining strict privacy constraints, the model still achieves an accuracy
of 68.4%, a loss of 0.98, and converges in 98 rounds, balancing both privacy and utility. In more sensitive
practical applications, it is common practice to select ε ≤ 1.0 or even smaller budget values to obtain stronger
privacy protection. In the future, we will extend the experiments to scenarios with ε < 1.0 to validate the
applicability and robustness of the proposed method under extreme privacy conditions.
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Figure 11: Feasibility analysis of differential privacy mechanisms

(a) (b)

Figure 12: Model performance with privacy budget. (a) Privacy budget and model accuracy/loss relationship;
(b) Relationship between privacy budget and model convergence

Fig. 13 experimental results demonstrate the convergence behaviors under different β values. When
β = 0.1, the model converges faster in the initial stage but stagnates at a lower accuracy in later phases.
β = 0.3 achieves an optimal balance between efficiency and stability, reaching 81% accuracy by the mid-
phase, making it the best choice for substation scenarios. While β = 0.5 attains the highest final accuracy, it
exhibits the slowest convergence speed. Further increasing β to 0.7 results in a smoother convergence curve
and similar final accuracy to β = 0.5, but with even slower convergence. At β = 0.9, excessive smoothing
leads to delayed update responses and limited model improvement. Overall, a moderate value (e.g., β = 0.3)
provides the best trade-off between convergence efficiency and final performance, whereas excessively large
values may weaken the model’s learning capability.

Fig. 14 quantitatively demonstrates the performance superiority of dynamic clipping over static meth-
ods: dynamic clipping achieves significantly higher initial accuracy and maintains persistent performance
advantages throughout the training trajectory. Although both methods converge to comparable final
accuracy, dynamic clipping stabilizes at target precision 20 epochs earlier, empirically validating that
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adaptive gradient clipping mechanisms substantially accelerate convergence efficiency while enhancing
training stability.

Figure 13: Convergence comparison under different β values

Figure 14: Performance advantage of dynamic clipping and static clipping

Fig. 15 presents a comparative analysis between our proposed method and several baseline approaches,
including DDP, DP-FedAvg, FedAsync with static DP, and a Byzantine-resilient federated learning method.
The results demonstrate that while DDP achieves the highest performance in a centralized environment,
it provides no privacy protection. DP-FedAvg introduces strong noise to ensure privacy but at the cost of
reduced model accuracy. FedAsync with DP shows certain efficiency advantages in asynchronous training,
yet its improvements in the privacy-utility trade-off remain limited. The Byzantine-resilient method exhibits
robustness against malicious updates; however, its overall accuracy is still lower than our approach due to
additional aggregation constraints. In contrast, our proposed method outperforms all baselines, achieving
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the highest accuracy and F1-score while maintaining the lowest loss value. These results highlight the com-
prehensive advantages of our dynamic privacy budget allocation mechanism in terms of utility, convergence
stability, and robustness.

Figure 15: Comparison of performance between the proposed method and traditional federated learning

5 Conclusion
To address the challenges of centralized single-point failures and synchronous gradient leakage in

substation data privacy protection, this paper proposes a three-tiered architecture for substation data
privacy preservation based on asynchronous federated learning. The architecture achieves privacy protection
through a dynamic noise-tuning mechanism while enhancing decentralized aggregation efficiency via the
integration of PBFT and smart contract-coordinated consensus. Experimental results demonstrate that the
proposed architecture significantly improves model performance while ensuring substation data privacy.
Specifically, the enhanced CNN model exhibits a 23.37% improvement in accuracy and a 0.234 increase in
F1-score compared to the baseline model. Additionally, the data aggregation-to-chain latency (1.58 s) and
query latency (80.79 ms) meet substation operational requirements, providing a viable solution for smart
grid data privacy protection.

Future research may be directed toward several important extensions of the present work. First,
algorithmic optimization remains a crucial avenue, particularly through the development of more efficient
strategies for dynamic privacy budget allocation and lightweight aggregation mechanisms, with the aim of
reducing computational and communication overhead in resource-constrained environments. Second, the
applicability and robustness of privacy-preserving federated learning frameworks merit further validation
in complex and large-scale grid environments, including cross-regional and multi-node scenarios, where
heterogeneous data and dynamic conditions pose additional challenges. Finally, the design of cross-regional
blockchain interoperability protocols constitutes a promising research direction, as such protocols are
essential for enabling secure, scalable, and collaborative data exchange across heterogeneous blockchain
infrastructures in power system applications.
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