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ABSTRACT: With the rapid development of digital culture, a large number of cultural texts are presented in the form of
digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression,
which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper
proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification
model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve
the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the model’s ability
to capture and model potential key information in short texts is strengthened. The Singular Value Decomposition
(SVD) was used to replace the traditional Max pooling operation, which effectively reduced the feature loss rate and
retained more key semantic information. The cross-entropy loss function was used to optimize the prediction results,
making the model more robust in class distribution learning. The experimental results indicate that, in the digital
cultural text classification task, as compared to the baseline model, the proposed ASSC-TextRCNN method achieves an
11.85% relative improvement in accuracy and an 11.97% relative increase in the F1 score. Meanwhile, the relative error
rate decreases by 53.18%. This achievement not only validates the effectiveness and advanced nature of the proposed
approach but also offers a novel technical route and methodological underpinnings for the intelligent analysis and
dissemination of digital cultural texts. It holds great significance for promoting the in-depth exploration and value
realization of digital culture.

KEYWORDS: Text classification; natural language processing; TextRCNN model; albert pre-training; singular value
decomposition; cross-entropy loss function

1 Introduction
With the rapid advancement of information technology and the accelerating pace of digital trans-

formation, the digitization of cultural resources has emerged as a global trend [1]. As vital carriers of
cultural information, digital cultural texts are widely distributed across news media, social networks, digital
archives, online publications, and various cultural dissemination platforms, exhibiting exponential growth
in volume [2]. This trend not only drives profound transformations in the production and dissemination
of culture but also opens up new avenues for cultural preservation and value creation. However, how to
efficiently and accurately classify and analyze massive volumes of digital cultural texts—and quickly retrieve
the desired information—has become a key research focus [3]. The explosive increase and disordered
distribution of textual data, including vast amounts of short cultural texts such as microblogs, news headlines,
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and product reviews, have significantly impacted the efficiency and effectiveness of information retrieval,
thereby attracting growing attention to digital cultural text classification [4].

As a foundational task in text mining, the performance of text classification directly influences the
quality and efficiency of downstream applications. In the context of digital culture, text classification
faces unique challenges distinct from those in traditional domains [5]. Digital cultural texts often exhibit
high sparsity and real-time generation, with imbalanced information distribution and dispersed semantic
features [6]. Short texts dominate in digital media environments, and due to their brevity, they often suffer
from incomplete semantic expression and insufficient information content. Moreover, the networked nature
of expression introduces linguistic informality and diversity, further complicating feature extraction and
semantic modeling [7].

Against this backdrop, recent methods—ranging from classical bag-of-words pipelines to transformer-
based classifiers—still struggle with several practical and methodological constraints in digital-culture
scenarios: short texts amplify sparsity and out-of-vocabulary issues; rapidly evolving vernacular and topic
drift degrade model calibration; class imbalance and noisy labels hinder stable optimization; and common
architectural choices such as max-pooling or shallow context windows often discard subtle but decisive cues.
Moreover, many state-of-the-art transformers exact substantial computational cost yet provide limited gains
on brevity-dominated corpora where contextualization, feature preservation, and salient-token selection
must be jointly optimized. To address these limitations, we propose ASSC-TextRCNN, which augments
the TextRCNN backbone with ALBERT for parameter-efficient deep semantic embeddings, enhancing
generalization under data sparsity; a dual self-attention mechanism that adaptively reweights contextual
signals to surface lexically sparse but semantically pivotal tokens; and Singular Value Decomposition in
lieu of max-pooling to retain low-rank but information-bearing structures and mitigate feature loss, while
optimizing with standard cross-entropy for stable class-distribution learning. Empirically, ASSC-TextRCNN
delivers substantial gains on digital cultural text classification, achieving an 11.85% relative improvement in
accuracy and an 11.97% relative increase in F1 with a 53.18% reduction in error rate over strong baselines, and
exhibits a more compact, well-separated confusion structure—underscoring that the proposed integration of
pre-trained representations, attention, and SVD-based feature preservation provides an effective and efficient
solution for short-text classification in modern digital media environments.

2 Related Research
As one of the foundational tasks in natural language processing, text classification has long been a central

research focus in both academia and industry. Its core objective is to leverage algorithms and models to
automatically assign large volumes of unstructured text to predefined categories, thereby enabling efficient
information organization and precise retrieval [8]. With the explosive growth of text under the digital-culture
paradigm and the escalating breadth of application demands, text classification has assumed an increasingly
prominent role in domains such as information filtering, opinion mining, intelligent recommendation,
digital archive management, and cultural resource discovery [9]. Continuous advances and innovation in
text classification methods thus carry not only methodological significance, but also practical import for
upgrading the cultural industry and advancing data-driven social governance.

Common approaches to text classification can be broadly grouped into three categories: rule-based
systems, machine-learning-based systems, and deep-learning-based systems [10]. Rule-based systems are
essentially akin to decision trees; while they can achieve high accuracy, they typically rely on small test
sets and generalize poorly [11]. Compared with rule-based methods, machine-learning-based systems offer
stronger generalization, but they require manual feature engineering, and their performance can be biased by
the composition of the training data [12]. With the advent of the AI era, deep learning has been widely applied
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across computer vision, automatic speech recognition (ASR), and natural language processing (NLP) [13].
Deep learning obviates manual feature design and can exploit much larger training sets, albeit at the cost
of reduced model interpretability [14]. Given that our task targets fine-grained classification of news texts,
interpretability is not a stringent requirement. Although Chinese is among the most widely used languages
globally, research on Chinese text classification remains relatively scarce [15]. This is due in part to the greater
linguistic complexity of Chinese compared with English and, in part, to the limited availability of large-scale
Chinese corpora—both of which constrain progress in Chinese text classification.

2.1 Traditional Text Classification Methods
Early research primarily relied on statistical approaches and hybrids of rule-based and traditional

machine learning methods. Naithani proposed an analytical framework that combines natural language
processing (NLP) with a support vector machine (SVM) classifier to extract events from messages [16].
However, the model’s performance was limited by substantial noise in the data. Sarker and Gonzalez trained
on a combined corpus drawn from three different sources, extracting a rich set of features to train an
SVM [17], experiments showed that leveraging features compatible across multiple corpora can significantly
improve classification performance. In the PSB social media mining shared task, Chen et al. enhanced model
expressiveness and robustness by incorporating multimodal information such as text, images, and knowledge
bases [18]. Alizadeh et al. trained SVM and logistic regression classifiers using a rich feature space—including
lexicon-based, sentiment, semantic features, and word embeddings—and reported higher accuracy than
convolutional neural networks, with sentiment and embedding features contributing most [19]. Bashiri
et al. trained an SVM with extensive textual, sentiment, and domain-specific features, demonstrating that
the most influential features were general-domain word embeddings, domain-specific embeddings, and
domain terminology [20]. To address issues such as feature sparsity and weak semantic signals, Zheng
et al. have used topic vectors from the LDA (Latent Dirichlet Allocation) topic–word distribution matrix
to reduce dimensionality for short-text classification, while others fused lexical category features with
semantics [21]. Although these approaches outperform traditional baselines, they rely on the LDA topic
model—an unsupervised method that is relatively slow and sensitive to the choice of the number of topics,
thus requiring continual tuning. Another line of work extracts document keywords as text features and
achieves competitive results [22]; yet the keyword set grows with the number of documents, inflating the
dimensionality of the vector-space matrix and increasing computation. Despite steady gains, these lines of
work share constraints that are acute in digital-culture corpora: they depend heavily on hand-crafted or
corpus-specific features that are brittle under vernacular drift and platform noise; SVM/logistic pipelines
struggle to capture long-range context and compositional semantics, while LDA-based representations are
slow, topic-number-sensitive, and require continual retuning; keyword and feature inventories expand with
data scale, inflating dimensionality and computation yet still discarding subtle cues via coarse pooling or
sparse vectors; and multimodal add-ons often improve coverage but at the cost of complex feature fusion
and limited generalization.

2.2 Machine Learning and Neural Network Classification Methods
In recent years, a wide range of machine learning methods has been applied to text classification.

Machine learning, a subfield of artificial intelligence, aims to enable computer systems to process data
through automatic learning and performance improvement without explicit programming instructions [23].
Nevertheless, text exhibits weaker regularity, greater arbitrariness, and high complexity, leading to diverse
forms and structures; compared with vision, deep learning in the text domain remains relatively less
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mature [24]. With large-scale data and modern GPU clusters, however, theoretical and computational
advances have greatly strengthened the foundation for applying deep learning to text [25].

Within neural architectures, TextCNN, TextRNN, and TextRCNN are widely used models in NLP,
each built on distinct neural backbones—convolutional neural networks (CNNs), recurrent neural networks
(RNNs), or their combinations—to suit different task requirements [26]. Soni et al. proposed a CNN-based
text classifier that uses pre-trained word embeddings as input and applies one-dimensional convolutions
to capture word-order information, thereby enriching sentence-level representations [27]. However, CNNs
are relatively weak at modeling long-range dependencies, and pooling may discard positional information,
risking information loss. Akpatsa et al. first explored joint learning with a hybrid CNN–LSTM architecture
for text classification [28], subsequent work by Zhang et al. also fused CNNs and RNNs for short-text
classification, leveraging CNNs for local feature extraction and RNNs for long-distance dependencies [29].
To address limitations of pure CNNs and RNNs, Long et al. introduced TextRCNN, which uses a recurrent
structure to capture bidirectional context and a max-pooling layer to distill salient features—effectively
combining the strengths of RNNs and CNNs while mitigating their respective weaknesses [30]. Despite their
progress, these CNN/RNN hybrids still face gaps salient in short, noisy digital-cultural texts: CNNs under-
capture long-range semantics; RNNs incur gradient and efficiency costs; and TextRCNN’s max-pooling can
discard position- and context-sensitive cues. Many variants also depend on static or task-specific features
and grow parameters when stacking or ensembling, which hampers robustness under slang, topic drift,
and sparsity.

2.3 Improvement Directions for Text Classification
The introduction of attention mechanisms enables neural networks to focus selectively on salient

features, yielding more faithful language modeling. Consequently, attention has been widely adopted across
neural architectures. After its first use in NLP by Bhadauria et al. for machine translation, increasing
numbers of studies incorporated attention to strengthen feature extraction in diverse models [31]. Sahu
et al. proposed a sentence-modeling approach that combines a three-level attention mechanism with CNNs
for text classification, achieving strong results [32]. Sherin et al. added bidirectional attention to GRUs for
sentiment analysis, enhancing GRU-based classification [33]. Kamyab et al. introduced a bidirectional CNN–
RNN architecture fused with attention, where joint learning across deep models improved accuracy [34].
Beyond network hybrids and attention, other improvements have also been explored. Mars et al. introduced
BERT, a bidirectional Transformer-based language model trained on large corpora that produces context-
dependent word representations [35]. Du et al. integrated logical rules into deep neural networks to mitigate
opacity and leverage prior knowledge [36]. Liu et al. proposed ACNN (Attention Convolutional Neural
Network), which first uses CNNs for feature extraction and then feeds the features into a self-attention
encoder and a context encoder [37]; their outputs are merged and passed to a fully connected layer and
a softmax classifier. Chen et al. adapted neural machine translation–style models to text classification by
replacing recurrent units in a Seq2Seq framework with Transformer blocks and introducing multi-head
attention, thereby better handling long sequences and capturing semantic relations [38]. Wang et al. proposed
a model termed B_f that builds on FastText and employs bagging for ensembling [39]. While attention
and Transformer-based advances have markedly improved text modeling, many methods remain over-
parameterized, compute-intensive, and sensitive to domain drift and short-text sparsity; attention layers
can overfit to noisy cues, hierarchical schemes add fusion complexity, and common pooling steps still
lose fine-grained, position-aware signals. Moreover, gains from large pretrained encoders can taper off
on brevity-dominated, slang-heavy corpora without tailored mechanisms for salient-token selection and
feature preservation.
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In the broader landscape of text feature augmentation, recent work has moved beyond raw TF-
IDF (Term Frequency-Inverse Document Frequency) toward schemes that explicitly enrich or restructure
document representations to better align with category semantics. Attieh et al. introduce a category-
driven feature engineering (CFE) framework—grounded in a TF-ICF variant—that learns term–category
weight matrices and augments documents with synthetic, category-informative features, yielding higher
accuracy on five benchmarks with markedly lower compute than deep models [40]. Complementing
these supervised augmentations, Rathi et al. survey the mathematical underpinnings and taxonomy of
term-weighting, contrasting supervised and statistical families and highlighting how Vector Space Model
variants serve as the scaffolding on which many augmentation strategies are built [41]. At the level of
weighting functions themselves, Li et al. propose TF-ERF, replacing the logarithmic global component of
TF-RF with an exponential relevance frequency to better balance local/global contributions, improving
robustness and classification quality on standard corpora [42]. Together, these efforts illustrate a continuum
of augmentation—from principled reweighting to category-aware projection and feature synthesis—that
improves downstream classifiers while controlling model complexity and training cost.

NLP plays a pivotal role in textual information retrieval. However, most existing classifiers are designed
for balanced datasets, making model performance highly sensitive to the size and quality of training data.
For Chinese, the relative scarcity and imbalance of corpora substantially degrade precision on positive
classes, falling short of practical requirements [43]. Data augmentation is therefore widely used to alleviate
these issues by transforming existing samples into novel ones—commonly via synonym replacement or
back-translation. Wei et al. introduced EDA (Easy Data Augmentation), which applies four simple edits—
random deletion, replacement, swapping, and insertion—to improve text-classification performance and
reduce overfitting [44], owing to its randomness, however, EDA can discard information, ignore context,
and alter original meanings [45]. With advances in neural machine translation, back-translation has become
a popular augmentation technique: text is translated from the source language to an intermediate language
and then back to the source to create augmented samples [46]. Xie et al. proposed Unsupervised Data
Augmentation (UDA), which augments manually labeled data with distantly supervised signals to construct
a larger, more diverse training set and thereby improve generalization and performance across relation-
extraction tasks [47]. Zheng et al. further introduced an unsupervised augmentation method that imposes
a consistency loss so the model produces stable predictions across differently augmented views [48],
experiments on multiple semi-supervised tasks demonstrated significant gains and broad applicability across
domains and datasets. Liang et al. proposed a multi-channel neural text classification model that fuses
ALBERT embeddings with CNN (local features), GCN and BiLSTM (global spatial–temporal features), then
applies softmax, achieving superior accuracy and recall to single-channel and other hybrid baselines on
THUCNews [49]. Gao et al. introduced ALBERT-TextCNN-Attention (PATA), which dynamically fuses
intermediate ALBERT layers via two channels, adds TextCNN for local sentiment cues and an attention
mechanism for richer features, yielding a compact model (≈19.72% of BERT’s parameters) that attains 90.63%
accuracy on waimai-10k and outperforms recent ALBERT-based methods [50].

3 Models and Methods

3.1 Preliminaries
3.1.1 ALBERT Pretrained Language Model

We adopt the Chinese ALBERT pretrained language model, which encodes text features using a
bidirectional Transformer encoder in Fig. 1.
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Figure 1: ALBERT model architecture

Ti denotes the contextual feature vector of the i-th token after encoding by the Transformer; Ei is the
i-th token in the input sequence; and Trm represents the stack of bidirectional Transformer layers inside
ALBERT. Unlike static word embeddings, contextual embeddings (as in BERT/ALBERT) fuse syntactic,
lexical, and semantic cues and generate token representations that vary with context, thereby improving
text understanding and markedly enhancing representation quality. However, BERT’s large network and
parameter count (the base configuration has ∼110 M parameters) entail substantial computation and training
cost [51].

ALBERT addresses BERT’s parameter and training-time overhead through architectural and objective
modifications: factorized embedding parameterization decouples the word-embedding dimension E from
the hidden size H. The original embedding matrix of size V ×H (vocabulary size V ) is factorized into (V ×
E) ⋅ (E ×H), drastically reducing parameters when H is large; cross-layer parameter sharing ties weights
across Transformer layers, avoiding parameter growth with depth; and replacing Next Sentence Prediction
with Sentence Order Prediction improves inter-sentence relation modeling. Relative to BERT, ALBERT
achieves faster training with far fewer parameters while preserving strong dynamic encoding performance.
Accordingly, we employ ALBERT at the embedding layer to obtain contextualized token representations.

As a BERT variant, ALBERT inherits BERT’s strengths while mitigating its drawbacks. In vanilla BERT,
E = H; increasing H forces E to grow, risking parameter explosion. ALBERT “unbinds” E from H via the
above factorization and shares parameters across layers, effectively learning one set of layer weights that is
reused by all layers.

3.1.2 Dual Attention Mechanism
Attention was first introduced in vision and later adapted to text to extract word-level salient infor-

mation, mimicking human selective focus while reading [52]. Readers naturally concentrate on informative
spans to grasp a topic quickly. Formally, the attention module can be viewed as a single-layer neural network
with a softmax output: its input is the preprocessed short-text word embeddings, and its output estimates
each token’s contribution to every class label.
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Let an input sequence be W = (w1 , w2, . . . , wn), where n is the number of tokens and wi is the
embedding of the i-th token. For each token wi , we compute a score vector

yi = Twi + b (1)

where T is a weight matrix and b is a bias term. Passing yi through a nonlinearity (e.g., sigmoid) and then a
softmax yields the class-posterior probabilities

p (y = k ∣ wi ; T) =
exp (y(k)

i )

∑K
j=1 exp (y( j)

i )
(2)

where K is the number of classes and y(k)
i is the k-th component of yi . During training, we use pairs (wi , yi),

where yi is the class label of token wi in context. Model parameters are optimized by minimizing the negative
loglikelihood:

�(T) = −
m
∑
i=1

log p (y = yi ∣ wi ; T) (3)

with m the number of training tokens. After training, each token wi is mapped to a probability vector over
classes; we treat this vector as the token-level attention αi . Stacking {αi}n

i=1 forms the word-attention matrix
MA in Table 1, where MA[i] = αi encodes the confidence of token ti for each class.

Table 1: Word attention matrix

Attention vector 1 2 . . . k
t1 p (y = 1 ∣ t1; T) p (y = 2 ∣ t1; T) . . . p (y = k ∣ t1; T)
t2 p (y = 1 ∣ t2; T) p (y = 2 ∣ t2; T) . . . p (y = k ∣ t2; T)
. . . . . . . . . . . . . . .
tn p (y = 1 ∣ tn ; T) p (y = 2 ∣ tn ; T) . . . p (y = k ∣ tn ; T)

3.1.3 SVD-Enhanced Pooling
To mitigate the loss of semantic and positional information caused by max pooling in TextRCNN,

we replace the conventional pooling layer with singular value decomposition (SVD). This modification
performs dimensionality reduction via low-rank matrix approximation, retaining principal components
while preserving global semantic relations. Unlike max pooling—which keeps only local extrema—SVD
captures the global structure of the feature matrix through spectral factorization, suppressing redundancy
and reducing information loss [53]. As a result, the model attains stronger representations of deep semantic
cues in text.

Singular value decomposition is a matrix factorization technique that expresses a matrix as the product
of three matrices. For a nonzero real matrix A ∈ Rm×n (assume m ≥ n), SVD writes A = UΣV⊺, where U ∈
R

m×m is an orthogonal matrix whose columns are the left singular vectors, V ∈ Rn×n is an orthogonal matrix
whose columns are the right singular vectors, and Σ ∈ Rm×n is diagonal with nonnegative singular values in
descending order:

U⊺U = Im , V⊺V = In , Σ = diag (σ1 , σ2, . . . , σn), σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ 0. (4)
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A standard procedure isEigen-decompose A⊺A (an n × n symmetric matrix) (A⊺A) vi = λivi with
eigenvalues λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn and orthonormal eigenvectors {vi}n

i=1, which form V = [v1 , . . . , vn].
Eigen-decompose AA⊺ (an m ×m symmetric matrix):

(AA⊺)ui = λiui (5)

yielding orthonormal eigenvectors {ui}m
i=1, which form U = [u1 , . . . , um]. Let rank (A) = r. Then A⊺A has r

positive eigenvalues and n − r zeros:

λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λr > λr+1 = ⋅ ⋅ ⋅ = λn = 0 (6)

and the singular values are

σi =
√

λi , σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σr > 0, i = 1, . . . , r (7)

With S = diag (σ1 , . . . , σr), the diagonal matrix takes the block form

Σ = [S 0
0 0] (8)

Low-rank approximation. The singular-value spectrum typically decays rapidly; in practice, the top k
singular values (often a small fraction of the spectrum) capture the vast majority of the energy. Using the
largest k singular values and their corresponding singular vectors yields an efficient approximation:

Am×n ≈ Um×k Σk×k V⊺n×k , k ≪ n. (9)

Thus, for A ∈ Rm×n , one may represent A compactly by Uk ΣkV⊺k with Uk ∈ Rm×k , Vk ∈ Rn×k . After
dimensionality reduction via SVD, the matrices Uk Σk (size m × k) or ΣkV⊺k (size k × n) serve as reduced
representations that preserve the most informative structure-effectively mapping an m × n feature matrix to
m × k. Fig. 2 shows the dimension reduction and improvement method of the SVD algorithm. The improved
TextRCNN model based on the SVD algorithm is shown in Fig. 3.

Figure 2: Singular value decomposition algorithm for dimensionality reduction
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Figure 3: TextRCNN-SVD network structure diagram

3.1.4 Cross-Entropy Loss Function
In this study, we adopt the cross-entropy loss function (CrossEntropyLoss) as the objective function for

model training [54]. PyTorch provides a convenient implementation, nn.CrossEntropyLoss(), to compute
this loss. Cross-entropy is a widely used loss function, particularly suited for classification tasks. It measures
the discrepancy between two probability distributions and is extensively applied in deep learning for
model optimization.

The principle of cross-entropy is grounded in two fundamental concepts from information the-
ory: information content and entropy. Information content quantifies the uncertainty associated with an
event, representing how much information is gained when the event occurs. This is commonly defined
using a logarithmic function. We train with the standard cross-entropy loss—implemented via PyTorch’s
nn.CrossEntropyLoss (which combines LogSoftmax and NLLLoss)—to align the predicted class distribution
with the ground-truth labels.

3.1.5 TextRCNN Model
To overcome the limitations of both RNNs and CNNs, the TextRCNN architecture was proposed. It

leverages a bidirectional recurrent structure to capture both preceding and succeeding context, enabling
the model to preserve word order over a broader range compared to CNNs. Additionally, it applies a max-
pooling layer to extract the most important semantic features and automatically determine which parts of
the text are most relevant for classification [55]. The architecture of the TextRCNN classification model is
shown in Fig. 4. The model consists of three components: (1) a recurrent structure, (2) a max-pooling layer,
and (3) an output layer. First, each input word is mapped to its corresponding word embedding through the
input layer, resulting in a word embedding matrix for the sentence. The size of each sentence matrix is n × k,
where n is the number of words in the sentence and k is the dimensionality of the word embeddings.
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Figure 4: TextRCNN model architecture

The word embeddings are then fed into a bidirectional recurrent network to obtain both forward and
backward contextual representations for each word:

cl (wi) = f (W(l)cl (wi−1) +W(s l)e (wi−1)) (10)

cr (wi) = f (W(r)cr (wi+1) +W(sr)e (wi+1)) (11)

here, wi denotes the i-th word in the input sequence. cl (wi) and cr (wi) represent the left (preceding)
and right (succeeding) contextual representations of wi , respectively. e (wi−1) is the word embedding of
the previous word. The matrices W(l) and W(s l) are weight parameters that propagate the left context and
incorporate the semantics of the previous word into the current context. The function f is a non-linear
activation function.

By concatenating the contextual vectors with the original word embedding, the complete representation
of word wi is defined as:

xi = [cl (wi)∶ e (wi)∶ cr (wi)] (12)

Next, a non-linear transformation is applied to compute the hidden semantic representation of each
word:

ŷ(2)i = tanh (W(2)xi + b(2)) (13)

To identify the most salient semantic information across the entire sentence, a max-pooling operation
is applied:

y(3) =max ŷ(2)i (14)

Finally, y(3) is passed through a fully connected layer, followed by a Softmax function for classification.
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3.2 Proposal
3.2.1 Improvement of the ALBERT Pre-Trained Model

In this work we use albert_tiny_zh, pretrained on a large-scale Chinese corpus of roughly two billion
samples [56]. Compared with BERT base, it retains comparable accuracy while using only about 4M
parameters (approximately 1/28 of BERT base), and yields roughly an order-of-magnitude speedup in
training and inference.

Given a preprocessed input sequence

text = [w1 , w2, . . . , wm] (15)

ALBERT produces contextualized embeddings

X = ALBERT (text) = [x1 , x2, . . . , xm]T (16)

where X ∈ Rm×d , d is the embedding dimension, and xi ∈ R1×d is the embedding of the i-th token. These
design choices substantially reduce parameters and training time while strengthening semantic modeling,
yielding competitive classification performance.

Using the base version of the ALBERT model as an example, this study proposes an adaptive method
to generate a semantic representation vector that best captures the meaning of each input text. Specifically,
instead of relying solely on the [CLS] vector from the final Transformer layer-as done in the original ALBERT
architecture-we extract the [CLS] vectors from all 12 Transformer encoder layers. We then compute dynamic
weights to quantify the contribution of each layer’s [CLS] vector to the final representation. These weights are
applied via an attention mechanism, producing a fused [CLS] vector that integrates semantic information
from all Transformer layers. This enhancement significantly improves the expressiveness and accuracy of the
resulting text representation. Since each Transformer layer in ALBERT’s pre-trained model consists only of
an encoder block, we denote the [CLS] output from the i-th encoder layer as encoder_CLS i . This yields a
sequence of classification vectors: encoder_CLS = [encoder_CLS1, encoder_CLS2, . . . , encoder_CLS12] .

To enable the model to dynamically assign weights to each of these vectors based on the input text, we
design a recurrent module based on fully connected layers. For each classification vector in the encoder_CLS
group, a corresponding output is produced via a linear transformation, capturing the information strength
that layer contributes to the current classification task. After all layers are processed, their outputs are
concatenated and passed through a softmax normalization to produce a probability distribution over the
12 layers, representing the learned importance (dynamic weight) of each layer’s [CLS] vector. This adaptive
fusion mechanism allows the model to focus on the most informative layers per input instance, yielding a
richer and more context-sensitive representation than static, single-layer approaches.

3.2.2 Improvement of the Aggregation Mechanism of the Dual Attention Mechanism
We adopt a dual attention design, injecting attention at both the input layer and the bidirectional

recurrent layer: Before final classification, we estimate each token’s contribution to each class to enable
token filtering. The goal is to allocate higher attention to semantically meaningful parts of speech-primarily
nouns and verbs-while assigning little or no attention to function words such as prepositions, particles, or
colloquialisms. This increases the weight of tokens that carry precise semantics in the downstream classifier.

We introduce a class-conditional hierarchical aggregation mechanism following the acquisition of
contextual representations hi , which are derived from input tokens filtered by input-level attention and
subsequently encoded by a bidirectional recurrent layer. Specifically, token-level attention weights α(k)

i are
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used to aggregate all tokens within a document, producing a class-specific document representation vk =
∑i α(k)

i hi for each class k. These representations {vk} are then passed through a shared classification head to
yield document-level class distributions. In this architecture, the input-level attention suppresses functional
and noisy words before encoding, while the recurrent-layer attention emphasizes salient information in
context. Together, they determine the magnitude of α(k)

i , enabling class-specific attention pooling to yield
fixed-length document representations invariant to input length.

To enhance robustness, we apply temperature normalization and thresholding (or Top-r selection) to
the attention scores prior to aggregation. Additionally, SVDenhanced pooling can be applied to {hi} for
low-rank reconstruction that preserves global semantic structure, which is then fused with the attention
aggregated vk . The entire process is trained end-to-end with supervision only from document-level labels.
Attention parameters are learned through backpropagation, allowing the model to automatically infer which
tokens, under what context, are most important for which class, thereby consistently elevating token-level
saliency into document-level discriminative power.

3.2.3 SVD Enhanced Pooling Improvement
In the TextRCNN module, the contextual token encodings from ALBERT X ∈ Rm×d are convolved with

n filters w ∈ Rs×d , producing n column vectors c ∈ Rm−s+1. Stacking these yields the feature-map matrix

C = [c1 , c2, . . . , cn]T ∈ Rn×(m−s+1) (17)

We then apply SVD to C and retain the top k singular values and their singular vectors to obtain a
rank-k approximation

Ck = Un×k Σk×k V T
(m−s+1)×k . (18)

Using Un×k Σk×k as a compact summary captures the dominant structure of the feature maps and
reduces the dimensionality from n × (m − s + 1) to n × k. A subsequent flattening operation gives

r = Flatten (Un×k Σk×k) . (19)

For l distinct kernel widths, we perform this SVD-based reduction and flattening for each feature-map
matrix and then concatenate the resulting vectors to form the local textual feature representation

Flocal = [r1 ⊕ r2 ⊕ ⋅ ⋅ ⋅ ⊕ rl ] ∈ Rn⋅k⋅l×1 (20)

For a feature matrix X ∈ RL×d with sequence length L and hidden dimension d, the computational cost
of a full SVD is approximately O (min[Ld2, L2d]). To reduce this cost, we adopt truncated or randomized
SVD, retaining only the top r ≪min[L, d] singular components, which reduces the complexity to O(Ldr)-
comparable to that of common attention mechanisms in the context of short texts and moderate-sized
embeddings. SVD is differentiable almost everywhere on X when the singular values are distinct, enabling
stable backpropagation. To address the non-smoothness at points of repeated singular values, we apply
truncated SVD and impose thresholding or gradient stopping on near-zero singular values, restricting
gradient computation to Σr and its associated subspaces. This significantly improves gradient stability.
During training, we enable full_matrices = False and enforce singular value sorting. Input features are
preprocessed with layer normalization and scale clipping. When necessary, a small Tikhonov regularization
term is added to X⊺X to improve the condition number. The retained rank r is subject to early stopping
or upper-bound constraints, and gradient clipping is applied to prevent domination by large singular
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values. Under mixed precision training, we perform appropriate casting before and after SVD to ensure
decomposition and backpropagation are maintained in FP32 precision.

3.2.4 Improvement of the cross Entropy Loss Function
From the definitions of entropy, KL divergence, and cross-entropy, the following relationships can be

derived:

H (p) = −∑
i

p (xi) log (p (xi)) (21)

DKL(p ∥ q) = ∑
i
[p (xi) log (p (xi)) − p (xi) log (q (xi))] (22)

Substituting into the definition of KL divergence yields:

DKL(p ∥ q) = H(p, q) −H(p) (23)

here, p (xi) represents the fixed distribution of the training data, so H(p) is constant. Therefore, minimizing
the cross-entropy H(p, q) is equivalent to minimizing the KL divergence DKL(p ∥ q), with the goal of
making the predicted distribution q(x) as close as possible to the target distribution p(x).

Given the prevalence of long-tail categories in news corpora, we assign a class weight wy to each ground-
truth label y to mitigate the dominance of mainstream sections in the loss function. Additionally, we apply
label smoothing to the target distribution, replacing one-hot labels with p̃, where p̃y = 1 − ε and p̃k≠y =
ε/(K − 1), to reduce overfitting caused by annotation noise and semantically similar classes. To emphasize
hard examples and easily confusable sections, we incorporate a focal modulation factor (1 − qy)

γ into the
cross-entropy loss-where qy is the predicted probability of the true class and γ is a small value (e.g., 1–2) thus
adaptively amplifying the contribution of difficult samples without altering the gradient form. News labels
often exhibit a hierarchical structure of “channelsubcategory”. To leverage this, we construct a cost matrix
C that assigns lower penalties when predictions fall within the same parent channel as the true class, and
higher penalties for cross-channel misclassifications.

4 Experiments and Results

4.1 Experimental Data and Environment
The experimental dataset is a text classification dataset selected from THUCNews (URL: https://github.

com/jinmuxige0816/THUCNews/tree/main, accessed on 01 December 2025). It contains a total of 200,000
news headlines, each with a text length between 10 and 30 characters. The dataset covers ten categories:
finance, real estate, stock, education, technology, society, current affairs, sports, games, and entertainment.
Each category consists of 20,000 text samples, labeled with digits 0–9. In the experiments, 180,000 samples
were randomly selected as the training set, 10,000 as the test set, and another 10,000 as the validation set. The
experimental environment configurations are shown in Table 2.
4.2 Hyperparameter Comparison Experiments

In this section, a series of comparative experiments are conducted on three hyperparameters—namely
the value of k in the SVD algorithm, the convolution kernel size, and the number of convolution kernels—in
order to examine their impact on the classification performance of the proposed model and to determine
their optimal settings.

https://github.com/jinmuxige0816/THUCNews/tree/main
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Table 2: Experimental environment configurations

Environment Configuration
Operating system Windows 11

CPU Intel Core i9-14900k
GPU NVIDIA GeForce RTX 3090 Ti

Python 3.8
PyTorch 1.12.0+cu113

Encoding format UTF-8

For the SVD algorithm, dimensionality reduction is achieved by retaining the top k singular values
and representing the main features of the feature map matrix using the product of the k-order left singular
matrix and the singular value matrix, Un×k Σk×k . The choice of k is crucial, as it determines both the reduced
feature dimension and the quality of dimensionality reduction. In this study, the maximum dimension of the
feature vectors requiring dimensionality reduction via SVD is 90. Therefore, with other parameters fixed, k
is varied from 1 to 9. The evaluation indicators used were the time consumption comparison before and after
the SVD improvement and the macro-F1 score (macro-F1), in order to analyze the impact of k on the model
performance. The experimental results are shown in Fig. 5.

Figure 5: Model performance and time under different k values in the SVD algorithm

The feature dimension retention parameter k in the SVD algorithm has a significant impact on model
performance. When k is too small, insufficient feature dimensions are preserved, leading to information loss
and limiting the model’s feature extraction ability. Conversely, when k is too large, redundant dimensions
increase model complexity, which may cause overfitting. When k = 5, the model achieves the highest macro-
F1 score. Therefore, in this study, the SVD algorithm retains five dimensions after feature vector reduction.
The runtime curves indicate that computational cost increases almost monotonically with k: for SVD, the
time grows from 2.88 to 8.10 h; for MaxPool, from 0.96 to 4.75 h. The performance gap between the two is
approximately threefold in the low-k regime, gradually narrowing as k increases but remaining substantial,
thereby quantifying the trade-off of performance for time. Balancing performance and efficiency, k = 5 yields
the optimal macro-level discriminative power with an acceptable computational cost under the current
dataset and implementation. This result also supports a practical guideline: when the network and input
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scale are fixed, selecting a moderate k value that captures the major energy components without excessively
increasing the rank allows SVD to effectively exploit its global structural expressiveness while avoiding
unnecessary computational overhead and the risk of overfitting.

Model parameters are internal configuration variables, and different parameter settings can significantly
affect model performance. Compared with traditional machine learning, deep learning involves larger-scale
data and requires a broader range of parameter choices. The hyperparameter settings used in this study are
summarized in Table 3.

Table 3: Hyperparameter settings of the model

Parameter Value
Text length 32

Epochs 3
Batch size 128

Hidden size 768
Convolution kernel size 2, 3, 4

Number of convolution kernels 256
Learning rate 5 × 10−5

Dropout 0.1

To ensure efficiency, we first conducted a small-scale hyperparameter search on a fixed validation set
and determined the final configuration based on a trade-off between macro-averaged F1 (macro-F1) and
training time. Specifically, the learning rate was fine-tuned over 2 × 10−5, 3 × 10−5, 5 × 10−5, 1 × 10−4 using
the AdamW optimizer with linear warm-up followed by a constant schedule. Results indicated that 5 × 10−5

offered the best convergence speed and stability, and was therefore adopted. The number of training epochs
was compared across 2, 3, 4, 5 with early stopping enabled. Performance gains on the validation set saturated
after 3 epochs, with signs of slight overfitting, leading to the choice of 3 epochs. The batch size was constrained
by GPU memory and effective batch size considerations; a size of 128 provided a good balance between
throughput and generalization. The hidden dimension was set to 768, consistent with the backbone size of
the pretrained encoder, with no further search. The input sequence length was set to 32 based on a prior
analysis of corpus length distribution-this choice maintained a controllable truncation ratio, and increasing it
to 64 or 128 yielded marginal macro-F1 improvements at the cost of significantly higher memory and latency.
For convolutional layers, kernel sizes (2, 3, 4) were selected to cover diverse local patterns, showing greater
robustness on the validation set compared to (3, 4, 5). The number of convolutional kernels was set to 256,
achieving a good trade-off between representational capacity and parameter efficiency. Dropout was fixed at
0.1, a common setting for fine-tuning pretrained models.

4.3 Effect Experiment of Algorithm Module
To further illustrate the impact of different architectural enhancements, Fig. 6 compares the per-

formance of baseline models with their variants augmented by attention mechanisms, singular value
decomposition (SVD), and the combination of both. The y-axis represents the performance metrics of the
evaluated text classification models. Specifically, it shows the Accuracy (%) and F1-score (%), both expressed
as percentages.
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Figure 6: Evaluation results of classical text classification models. All models share identical data splits, hyperparameter
configurations, and early-stopping criteria to ensure fair comparison. The reported metrics—classification accuracy and
macro-averaged F1—are averaged over five random seeds, with standard deviations below 0.5% omitted for clarity. (1)
Baseline Models: trained without attention or singular value decomposition (SVD) modules. (2) Baseline + Attention:
models augmented with token-level attention to highlight salient contextual information. (3) Baseline + SVD: models
enhanced with truncated SVD pooling for global structural representation. (4) Baseline + SVD + Attention: combined
attention–SVD variants integrating both local focus and global semantic compression

When evaluating the constructed dataset with classical text classification models, we select four deep
learning approaches without BERT or attention—TextCNN, TextRNN, DPCNN, and TextRCNN—and
compare performance using accuracy and F1 score. The accuracies of the four models on this dataset are
80.82%, 83.92%, 85.08%, and 81.78%, respectively. Overall, DPCNN performs best in terms of accuracy,
reaching 85.08%; its stacked deep convolutional blocks effectively enhance contextual modeling, conferring
advantages in capturing long-range dependencies and extracting deep semantic features. In contrast,
TextRNN achieves the highest F1 score (86.94%), indicating a better balance of precision and recall for
this task. Owing to its recurrent architecture, TextRNN models sequential dependencies particularly well,
leading to superior class balance in predictions. Despite the computational efficiency and simplicity of
TextCNN’s local convolutional feature extraction, its accuracy (80.82%) and F1 score (81.81%) are lower than
those of the other models, reflecting limitations in modeling long texts on this dataset. TextRCNN attains
intermediate-to-lower performance, with an accuracy of 81.78% and an F1 score of 81.71%. Although its
hybrid convolution–recurrent design captures both local and global features, it does not deliver a marked
advantage at larger experimental scales.
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After introducing a dual attention mechanism on this dataset, TextRNN_Att stands out, with accuracy
rising to 87.78% and F1 to 87.23%, improvements of 3.86 and 0.29 percentage points over the baseline,
respectively. TextRCNN_Att also improves noticeably, with accuracy increasing from 81.78% to 84.70% and
F1 from 81.71% to 85.80% (gains of 2.92 and 4.09 percentage points), yet its absolute performance still lags
behind TextRNN_Att by 3.08 points in accuracy and 1.43 points in F1. For DPCNN, the dual attention
mechanism yields a mixed effect—accuracy decreases from 85.08% to 83.17% (−1.91 points) while F1 increases
from 82.08% to 83.42% (+1.34 points)—suggesting that dual attention helps balance precision and recall
but its global reweighting may partially interfere with DPCNN’s stable extraction of hierarchical n-gram
structures. TextCNN_Att attains an accuracy of 80.61% and an F1 of 80.17%, both slightly below the baseline
(−0.21 and −1.64 points), indicating that in shallow architectures dominated by local convolutions, dual
attention provides limited benefit and may introduce minor performance fluctuations due to increased
variance in weight distributions.

Building on the original models, further integrating singular value decomposition (SVD) for feature
processing yields substantial gains across all four model types. SVD_TextRCNN exhibits the largest improve-
ment, with accuracy rising from 81.78% to 87.45% (+5.67 points) and achieving the best F1 overall. The dual
attention mechanism, through two levels of weighting at the token and sentence levels, both highlights salient
information and suppresses irrelevant features, while globally refining the semantic distribution of sentence
representations—thereby granting RNN/RCNN-type models stronger advantages in recall and F1. SVD, by
performing low-rank matrix factorization for dimensionality reduction and denoising, preserves principal
semantic directions and removes high-dimensional redundancy, simultaneously reducing model complexity
and improving interclass linear separability; this effect is particularly pronounced for high-dimensional
long-sequence representations.

Taken together merely introducing the dual attention mechanism improves F1 for some models but
does not fundamentally alter TextRCNN’s relative disadvantage; however, augmenting the representation
with SVD markedly enhances separability and generalization for all models, with TextRCNN attaining the
highest F1 (88.34%). These results indicate that combining a dual attention mechanism with SVD can further
unlock performance potential in the subsequent fusion model and better balance precision and recall in text
classification tasks.

To further enhance these SVD-processed models, we introduce an attention mechanism; in partic-
ular, adding attention to SVD-TextRCNN yields the method proposed in this paper. After introducing
a dual attention mechanism into the four classical text classification models already processed by sin-
gular value decomposition (SVD), all models achieve varying degrees of improvement. Among them,
SVD_TextRCNN_Att performs the best, reaching an accuracy of 89.76% and an F1 score of 89.49%, which
substantiates the significant role of dual attention in strengthening long-sequence dependency modeling
and optimizing the fusion of global and local features. SVD_TextRNN_Att attains an accuracy of 89.35%
and an F1 of 89.40; compared with SVD_TextRNN (88.82% accuracy, 87.68% F1), this reflects gains of 0.53
percentage points in accuracy and 1.72 points in F1. These results indicate that the dual attention mechanism
can further enhance semantic weighting in recurrent architectures that already possess strong sequential
modeling capabilities, yielding a more balanced trade-off between precision and recall.

At the feature-processing stage, SVD uses low-rank approximation to compress high-dimensional
sparse features, remove noise, and preserve the principal semantic directions, thereby making the input
features more compact and discriminative and providing a clearer semantic distribution for downstream
classification. Within the model, the dual attention mechanism applies two levels of weighting—word-
level and sentence-level—which both highlights the tokens most critical for classification and refines the
sentence representation at the global contextual level, organically combining salient local information with
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global semantic structure. The fusion of these components equips the model with efficient, robust feature
representations while enabling dynamic reweighting during inference, markedly improving its ability to
capture complex semantic patterns.

This fusion strategy is particularly effective for SVD_TextRCNN: leveraging RCNN’s strong contextual
capturing capacity, SVD’s feature compression advantages, and dual attention’s global–local weighting, it
attains the highest accuracy and F1, validating the effectiveness and superiority of the proposed method in
text classification by balancing precision and recall and enhancing model generalization.

4.4 Experiments before and after the Improvement
To systematically verify the effectiveness and trainability of the proposed ASSC-TextRCNN for text

classification, we conduct controlled experiments using the classical TextRCNN as the baseline. The two
models are trained under identical data splits and preprocessing pipelines, and they share the same optimizer,
learning-rate schedule, batch size, maximum number of iterations, and regularization strategy. Except
for introducing the ASSC module, all other network components and training hyperparameters remain
unchanged to ensure fairness. We evaluate classification accuracy (Accuracy) and cross-entropy loss (Loss)
on both the training and validation sets, recording them in sync and visualizing them against training
steps, so as to examine optimization convergence, generalization behavior, and potential overfitting [57]. We
compile statistics for all indicators throughout training before and after the improvement; the comparative
trajectories are shown in Fig. 7.

Figure 7: Change of iteration index before and after improvement
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Under the same data and training configuration, the improved ASSC-TextRCNN exhibits clear advan-
tages over the baseline TextRCNN in convergence speed, final performance, and training stability. From
the training/validation loss and accuracy curves, ASSC-TextRCNN achieves a rapid loss drop and steep
accuracy rise in the early iterations (~1–3k), with training accuracy quickly surpassing 90% and entering
a plateau, whereas the baseline requires more iterations to approach a lower plateau—evidence of better
optimization attainability and sample efficiency. In terms of final performance, the validation accuracy of
ASSC-TextRCNN stabilizes around ~90%, an absolute gain of about 10 percentage points over the ~80%
baseline; meanwhile, its validation loss remains around ~0.32–0.35, markedly lower than the baseline’s ~0.55–
0.60, indicating reduced generalization error. The training and validation trajectories of ASSC-TextRCNN
are overall smoother with smaller oscillations, suggesting a more stable optimization process and lower
sensitivity to gradient noise and hyperparameter perturbations. By strengthening contextual representations
and inter-class separability, the ASSC mechanism accelerates the formation of discriminative features
and smooths decision boundaries, thereby improving both convergence efficiency and generalization.
Across accuracy, convergence, and robustness, ASSC-TextRCNN consistently outperforms the baseline,
demonstrating clear empirical advantages and practical value.

To comprehensively assess the effectiveness of ASSC-TextRCNN on a 10-class news classification task,
we again adopt TextRCNN as the baseline and conduct comparable controlled experiments under identical
data splits, preprocessing, and training hyperparameters. Evaluation metrics include per-class Precision,
Recall, and F1, which are visualized in three heatmaps for the baseline, the improved model, and their
difference, using both color intensity and cell values to encode performance magnitude and improvement.

The improved model achieves consistent and substantial gains on all three macro-averaged metrics
in Fig. 8, Precision rises from 0.817 to 0.916, Recall from 0.818 to 0.915, and F1 from 0.817 to 0.915, indicating
simultaneous enhancement of discriminability and coverage and a significant reduction in overall error. At
the class level, improvements are broad and particularly pronounced for previously weaker categories: for
example, stocks see F1 increase from 0.658 to 0.853, with Recall improving from 0.639 to 0.875 and Precision
from 0.679 to 0.832; finance improves in F1 from 0.774 to 0.908, with Precision and Recall gains of 0.130
and 0.136, respectively. Even for categories that already performed well, the improved model delivers steady
gains—for instance, education F1 rises from 0.903 to 0.953, and sports from 0.938 to 0.977—showing that
errors can still be further reduced in high-baseline regimes.

Figure 8: Heatmap of per-class metrics

The difference heatmap exhibits a predominantly positive and continuous coloration, reflecting con-
current improvements in Precision and Recall for most categories. These gains do not stem from threshold
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trade-offs but from systematic enhancements in representational capacity and class separability. Coupled
with the larger gains observed in semantically overlapping categories such as stocks, finance, and science, this
suggests that the ASSC mechanism more effectively captures long-range context and topical cues, reduces
cross-category confusion, and yields smoother, more robust decision boundaries. In summary, under a
rigorously fair setting, ASSC-TextRCNN significantly outperforms the baseline at both macro and micro
levels, demonstrating broad effectiveness and strong generalization, and providing solid empirical support
for scaling to larger and cross-domain datasets.

To examine the discriminative capacity and error structure of ASSC-TextRCNN on the 10-class news
task, we conduct strictly comparable controlled experiments with the same data split, preprocessing, and
training hyperparameters as TextRCNN, and visualize the test-set confusion matrices of both models side-
by-side to characterize inter-class misclassification patterns and their trends (a LogNorm color map is used
to enhance readability across different count magnitudes) in Fig. 9.

Figure 9: Comparison of confusion matrix of classification task before and after improvement

The diagonal counts for ASSC-TextRCNN increase markedly across all categories, and overall accuracy
improves from 81.78% to 91.47%, an absolute gain of +9.69 percentage points. This gain represents a “net
improvement” driven by a substantial reduction in systematic confusions rather than a trade-off between
categories. For key confusable pairs, bidirectional mistakes between finance and stocks shrink significantly:
“finance-stocks” drops from 163 to 75, and “stocks-finance” from 123 to 30, with the recalls of the two classes
rising from 0.735 and 0.639 to 0.871 and 0.875, respectively. Confusions due to semantic proximity between
science and games also diminish notably—for instance, “games-science” falls from 83 to 30, and “science-
stocks/politics/games” decrease from 71/50/58 to 33/20/27 (a total reduction of 99)—raising the science recall
from 0.705 to 0.866. For high-baseline categories, the diagonal strengthening in education and sports remains
evident, while residual confusions such as “education-entertainment” and “entertainment-sports/games”
drop from 34 to 10 and from 27/23 to 12/5, respectively. By integrating context more effectively and shaping
decision boundaries, ASSC-TextRCNN systematically reduces cross-class errors caused by topical overlap
and lexical co-occurrence, improving recall for weaker classes while further lowering errors for stronger ones.
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The remaining few symmetric or near-symmetric confusions suggest that future work could incorporate
finer-grained domain features and cross-paragraph semantic constraints to eliminate edge cases.

To comprehensively evaluate the overall advantages of the proposed ASSC-TextRCNN, which fuses
SVD and attention, on the 10-class news classification task, we conduct comparable controlled experiments
under the same data splits, preprocessing pipeline, and training settings as the competing models, and
perform a horizontal comparison using accuracy and F1 as metrics across classical sequence models (BiGRU,
BiLSTM, FastText), a self-attention model (Transformer), and pretrained language models (BERT, MacBERT,
ELECTRA). The results are presented in Table 4. To ensure a fair comparison, all models were trained using
an equivalent number of optimization steps and a unified early stopping criterion, rather than a fixed number
of epochs. Specifically, we employed the AdamW optimizer with 10% warm-up and cosine annealing for
learning rate scheduling. Early stopping was monitored based on macro-F1 on the validation set, with a
minimum improvement threshold of 0.001 and identical evaluation frequency across models. Additional
checkpoints were performed at 3, 5, and 10 epochs. Each experiment was repeated with five different random
seeds, and we report the mean and standard deviation of the results. For baselines that did not meet the
early stopping criterion within 3 epochs, training was continued until either early stopping was triggered
or the shared maximum step count was reached. This setup ensures that all methods are evaluated at their
respective optimal performance points.

Table 4: Comparison of deep learning text classification models

Model Accuracy (%) F1 (%)
BiGRU [58] 87.08 87.07

BiLSTM [59] 89.19 89.20
MacBERT [60] 88.34 88.34
ELECTRA [61] 87.17 87.14
FastText [62] 89.25 89.26

Transformer [63] 90.15 90.12
BERT [64] 89.50 88.50

ModernBERT [65] 90.68 87.26
DeBERTa-v3 [66] 89.82 91.41

RoPE [67] 88.37 89.34
RoBERTa [68] 89.42 90.24

ASSC-TextRCNN 91.47 91.49

ASSC-TextRCNN achieves the best performance on both metrics, with accuracy and F1 reaching 91.47%
and 91.49%, respectively—an absolute gain of +1.32/+1.37 percentage points over the strongest current
comparator, Transformer (90.15%/90.12%), corresponding to an approximate 13.4% reduction in relative
error rate. Compared with FastText (89.25%/89.26%) and BERT (89.50%/88.50%), the accuracy gains are
+2.22 and +1.97 points, and the F1 gains are +2.23 and +2.99 points, respectively, representing a more
pronounced advantage over earlier RNN-based models and related pretrained variants. The concurrent
improvements in accuracy and F1 indicate that the gains do not stem from thresholding or incidental class-
distribution effects, but from systematic enhancements in representation quality and decision-boundary
separability. In latent space, SVD performs low-rank compression that de-redundifies and denoises long
texts and topic-mixed scenarios, highlighting sentence-level stable semantic factors; on this foundation,
the attention mechanism further focuses on discriminative segments and mitigates confusions caused by
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cross-class lexical co-occurrence. Consequently, consistent gains are realized atop strong baselines spanning
diverse architectures and training paradigms. Together with the evidence from the confusion matrices and
per-class metrics, ASSC-TextRCNN substantially boosts recall for weaker classes while further reducing
residual errors for stronger classes, demonstrating broad-spectrum efficacy and robust generalization.

5 Discussion and Conclusions

5.1 Research Significance
Addressing the challenge that digital-culture texts—characterized by being sparse, short, noisy, and

highly time-sensitive—are difficult to model effectively with traditional methods, this study proposes and
systematically investigates a classification framework based on ASSC-TextRCNN. On top of TextRCNN’s
context-aware convolution–recurrent architecture, we introduce ALBERT as a pretrained semantic encoder
to enhance deep semantic alignment; we design a short-text–oriented dual-attention mechanism that
adaptively focuses on latent key information along the word–context and channel–semantics dimensions;
we replace traditional max pooling with singular value decomposition (SVD) to mitigate feature loss from
extreme pooling and preserve discriminative subspaces; and we adopt cross-entropy loss to robustly capture
class distributions. These architectural refinements strike a better balance among representation depth,
information fidelity, and discriminability.

Experiments demonstrate that ASSC-TextRCNN substantially outperforms multiple mainstream deep-
learning baselines on digital-culture text classification: relative to the baseline, accuracy improves by 11.85%,
F1 by 11.97%, and the relative error rate decreases by 53.18%; the confusion matrix exhibits overall contraction,
and class boundaries become clearer. These results indicate that deep coupling of pretrained semantics
with contextual structure effectively alleviates the information scarcity of short texts; dual attention can
reliably distill key cues under sparsity and noise, enhancing sensitivity to fine-grained class differences; SVD-
based subspace compression and reconstruction preserve global discriminative information better than max
pooling, improving robustness; and end-to-end optimization with cross-entropy enables stable decision
surfaces even under class imbalance and fuzzy boundaries.

Robust understanding of short and nonstandard expressions improves automatic archiving, topic
clustering, and metadata annotation for cultural materials. More accurate, fine-grained classification
markedly enhances topic routing and audience targeting efficiency, reducing exposure waste from
misclassification–misalignment and activating the long tail of high-quality cultural content for precise reach.
The “structure-preserving + key-selection” synergy formed by dual attention and SVD effectively sup-
presses noise interference and semantic drift, supporting public-opinion early warning, content compliance
review, and intellectual-property protection for more fine-grained governance. Stable classification signals
provide quantifiable evidence for hotspot discovery, issue-evolution tracking, and curation optimization,
forming a data-driven, closed-loop content-operations pipeline. ASSC-TextRCNN embodies a synergistic
paradigm—from deep semantic pretraining to attention-based selection, structured compression, and
robust optimization—validating the effectiveness of structure-preserving dimensionality reduction (SVD)
+ attention-based discrimination and furnishing core infrastructure for organized representation and at-
scale distribution of digital-culture content in complex settings. With stronger semantic capacity and lower
misclassification costs, the model advances a shift from experience-driven to data–algorithm co-driven
cultural dissemination, accelerating value realization and the sustainable amplification of social impact.
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5.2 Research Outlook
Given the complex ecology of digital-culture texts—sparse, short, noisy, and time-critical—future

work on ASSC-TextRCNN should both deepen the technical pathway and broaden cultural applications.
On the technical front, we will first tackle the core issue of inadequate information in short texts by
exploring a synergy of external knowledge, context modeling, and attention-based selection: atop the
current ALBERT backbone, incorporate retrieval-augmented and knowledge-graph–constrained semantic
completion, injecting structured relations among cultural entities into encoding and decoding; aggregate
multi-granularity context across paragraphs and conversations to mitigate semantic sparsity in individual
short texts. Building on dual attention, we will develop interpretable hierarchical attention, enabling causal
visualization and controllable guidance of the word–context and channel–semantics foci, thus providing a
traceable evidence chain for cultural concepts and narrative themes. In line with the structure-preserving
idea behind replacing max pooling with SVD, we will investigate dynamic low-rank decomposition and
randomized approximations to reduce latency and memory while maintaining the integrity of the discrimi-
native space, and coordinate with parameter-efficient finetuning to ensure deployability and scalability under
platform-level, high-concurrency workloads.

Digital-culture content exhibits substantial diversity in topic, style, and genre, alongside pronounced
distributional drift; models must retain stable memory while updating flexibly over time: employ time-
aware train/validation splits and imbalance-aware long-tail reweighting to boost recognition of emerging
subcultures and niche themes; adapt across languages and dialects to build a multilingual, multi-domain
shared semantic subspace, using contrastive learning to align styles across platforms and genres and
thereby reduce out-of-domain performance collapse. Weak and distant supervision can rapidly expand label
coverage, while active learning—via uncertainty and cost-sensitive sampling—guides human annotation
to form an efficient human-in-the-loop pipeline, significantly lowering the cost of introducing new classes
and topics.

For interpretability, jointly visualize the contributions of dual attention and the low-rank subspace
to clarify which words/subspaces are pivotal to final decisions. Uncertainty estimation and probability
calibration will help the system respond cautiously in high-risk or semantically ambiguous scenarios,
reducing governance risks from misclassification. Regarding adversarial and noise robustness, system-
atically evaluate the impact of colloquialisms, orthographic variants, detection-evading metaphors and
homophones, and machine-translation noise on decision boundaries, and reinforce with data augmentation
and robust optimization to bolster resilience in real-world dissemination environments. For large-scale
deployment, integrate fairness and bias auditing end-to-end, with targeted evaluations for minority-language
communities, regional dialects, and youth/elderly users, preventing the technological amplification of
existing discourse imbalances.
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