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ABSTRACT: Recommendation systems are key to boosting user engagement, satisfaction, and retention, particularly
on media platforms where personalized content is vital. Sequential recommendation systems learn from user-item
interactions to predict future items of interest. However, many current methods rely on unique user and item
IDs, limiting their ability to represent users and items effectively, especially in zero-shot learning scenarios where
training data is scarce. With the rapid development of Large Language Models (LLMs), researchers are exploring their
potential to enhance recommendation systems. However, there is a semantic gap between the linguistic semantics
of LLMs and the collaborative semantics of recommendation systems, where items are typically indexed by IDs.
Moreover, most research focuses on item representations, neglecting personalized user modeling. To address these
issues, we propose a sequential recommendation framework using LLMs, called CIT-Rec, a model that integrates
Collaborative semantics for user representation and Image and Text information for item representation to enhance
Recommendations. Specifically, by aligning intuitive image information with text containing semantic features, we can
more accurately represent items, improving item representation quality. We focus not only on item representations but
also on user representations. To more precisely capture users personalized preferences, we use traditional sequential
recommendation models to train on users’ historical interaction data, effectively capturing behavioral patterns. Finally,
by combining LLMs and traditional sequential recommendation models, we allow the LLM to understand linguistic
semantics while capturing collaborative semantics. Extensive evaluations on real-world datasets show that our model
outperforms baseline methods, effectively combining user interaction history with item visual and textual modalities
to provide personalized recommendations.

KEYWORDS: Large language models; vision language models; sequential recommendation; instruction tuning

1 Introduction

Recommendation Systems (RS) have become an essential component of numerous application plat-
forms, with the primary objective of recommending relevant information resources to users based on
their individual preferences and needs [1]. By analyzing users” historical behaviors, interests, and evolving
requirements, recommendation systems offer personalized suggestions tailored to each user. With the
rapid advancement of technology, user preferences have shifted from being static to dynamic, continuously
evolving over time. This has led to an increased focus on sequential recommendation methods, which
have garnered significant research attention due to their ability to capture user behavior sequences and
temporal dynamics [2]. Sequential recommendation systems not only provide valuable insights into the
changing patterns of user behavior but also enable the prediction of users’ future actions based on their past

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.071994
https://www.techscience.com/doi/10.32604/cmc.2025.071994
mailto:motong@ss.pku.edu.cn

2 Comput Mater Contin. 2026;86(3):100

interactions. As a result, they offer more timely, relevant, and personalized recommendations that better
align with users’ evolving needs and preferences.

Sequential Recommendation Systems (SRS) capitalize on historical interaction sequences to predict the
subsequent item that holds the highest potential for capturing each user’s interest, as elucidated in [3]. A
pivotal aspect of SRS is the enhancement of our understanding of user preferences derived from interaction
sequences, which help to capture user behavior and improve recommendation accuracy. A plethora of
technical methodologies has been crafted to address this objective, with the most notable being those
based on recurrent neural networks [4], convolutional neural networks [5], and self-learning networks.
Attention mechanisms [6] and multi-layer perceptrons [7] also play key roles in improving recommendation
quality. As representative foundational models of advanced methodologies, BERT4Rec [3], CL4SRec [8], and
SASRec [9] have made significant progress in sequential recommendation, providing valuable insights for
subsequent research and applications.

Large Language Models (LLMs) have made rapid advancements, demonstrating exceptional capabilities
in context understanding, reasoning, and modeling world knowledge [10]. These remarkable achievements
have sparked intense interest and exploration in applying LLMs across various fields [11]. The extensive
world knowledge embedded in LLMs enables them to effectively transfer existing knowledge to new tasks.
In recommendation tasks, integrating LLMs with recommendation systems allows the system to go beyond
traditional numerical features and simple user behavior sequences, providing a deeper understanding of
users’ underlying intentions. At the same time, the vast knowledge base of LLMs helps recommendation
systems better comprehend content across various industries and domains, thereby enhancing the relevance
of recommendations. Additionally, LLMs can infer users’ potential needs based on contextual information.
Especially in cold-start problems, the application of LLMs has shown significant advantages, particularly
when generating recommendations for new users or new items [12]. By analyzing user language descriptions
or natural language introductions of items, LLMs help the system better understand users’ interests, thereby
improving the personalization of recommendations [13].

The integration of LLMs with recommendation systems, particularly in pioneering research, often
hinges on leveraging intrinsic learning mechanisms [14]. In such approaches, LLMs are directly tasked
with generating recommendations based on natural language prompts [15]. However, empirical evidence
suggests that raw, unmodified LLMs struggle to provide accurate and effective recommendations. This
challenge primarily arises from the absence of task-specific training, which is crucial for optimizing
performance in recommendation tasks, leading to suboptimal recommendation accuracy [16]. To mitigate
this issue, an increasing body of research has focused on fine-tuning LLMs by incorporating data that is
specifically tailored to recommendation tasks [17]. Fine-tuning enables LLMs to adapt to the intricacies
of recommendation systems and improve their ability to provide relevant suggestions. However, despite
these advancements, the fine-tuned LLMs still face significant hurdles in outperforming well-established,
traditional recommendation models. This is particularly evident when dealing with warm-start users or
items, where the performance of fine-tuned LLMs does not consistently surpass that of conventionally
trained models that have been specifically designed to address such challenges.

We argue that the limitations of existing approaches arise from a significant semantic gap between
the language semantics modeled by LLMs and the inherent collaborative semantics that underpin recom-
mendation systems. More specifically, in contemporary recommendation models, user behavior is typically
represented as a sequence of item IDs, rather than as detailed textual descriptions. In essence, LLMs and
traditional recommendation models utilize distinct vocabularies and methods to learn and represent their
respective semantic spaces, leading to a disconnect between the two. This semantic gap presents a substantial
challenge in fully exploiting the advanced capabilities of LLMs for recommendation tasks. Additionally,
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when researchers explore potential solutions, there is often an overemphasis on representing item-related
information, with insufficient attention given to the personalized modeling of user data, which is crucial for
improving the accuracy and relevance of recommendations.

To address the above issues, in this paper, we propose CIT-Rec, a model that integrates Collaborative
semantics for user representation and Image and Text information for item representation to enhance
Recommendations. Specifically, the CIT-Rec model consists of three modules: the User Collaboration
Information Module, the Item Semantic Embedding Module, and the Fusion and Recommendation Module.
To more accurately represent users and capture their personalized preferences, we design the User Collab-
oration Information Module. Compared to text, which can be naturally inserted into prompts and easily
understood by LLMs, ID-based user representations may be incompatible with the textual nature of the
prompts used by LLMs. Therefore, to bridge the modality gap, we map the ID-based user representation
space into the language space of LLMs. This consistency enables LLMs to interpret and leverage behavioral
knowledge from users’ interaction history. In the Item Semantic Embedding Module, to represent items
more accurately, we align image information, which intuitively represents the items, with textual information
containing semantic features to obtain item representations. First, we encode the item information from
different modalities. Then, to effectively capture higher-order signals of the items and obtain precise
representations, we use contrastive learning to extract item representations from both visual and textual
modalities. Finally, in the Fusion and Recommendation Module, to enable LLMs to understand the user and
item representations obtained from the two modules above, we fuse these representations into prompts. The
prompts include task definitions, interaction sequences with user and item representations, and a candidate
set with item representations. The model then uses Low-Rank Adaptation (LoRA) fine-tuning to generate
recommendation results. And we evaluate the proposed model on there benchmarks.

Our contributions are as follows:

Firstly, we align intuitive image information with text information containing semantic features to more
accurately represent items, thereby improving the quality of item representations.

Secondly, we not only focus on item representations but also consider user representations, training the
user’s historical interaction data with traditional sequential recommendation models to capture personalized
user representations.

Thirdly, we combine LLMs and traditional sequential recommendation models, enabling the LLM to
understand linguistic semantics while capturing collaborative semantics. We conducted experiments on
three publicly available datasets, and the results demonstrate that our method outperforms several advanced
baseline methods, generating more accurate recommendation results.

2 Related Work

In this section, we will introduce large language models, recommendation systems based on large
language models, and related work on multimodal large language models.

2.1 Large Language Models

The development of LLMs in natural language processing stems from in-depth exploration of language
understanding and generation capabilities. Through pre-training, language models can capture the complex
relationships between vocabulary and syntactic structures in context, enabling probabilistic modeling [18].
The introduction of the transformer architecture greatly enhanced the model’s understanding of long
sequences, allowing for more efficient processing of large-scale text in parallel computing. Based on this,
pre-trained models such as BERT [19], GPT [20], and T5 [21] adopt encoder, decoder, and encoder-decoder
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architectures, respectively, demonstrating excellent performance across different tasks. These models are
pre-trained on large-scale unlabeled data and then fine-tuned for specific tasks to improve language
understanding and generation capabilities, making them suitable for diverse natural language processing
applications. With the increase in model parameters, training data, and computational resources, LLMs
have gradually become an enhanced version of pre-trained language models, exhibiting emergent abilities to
handle complex tasks. These LLMs, such as GPT-4 [22] and Llama [23], have shown significant performance
improvements and demonstrated new abilities in tasks like reasoning, generation, and instruction following.
In addition, domain-specific LLMs, such as those in finance [24], medicine [25], and law [26], combine
domain expertise with the general commonsense knowledge of LLMs, forming capabilities tailored to
specific fields. For example, BloombergGPT [24] focuses on the finance domain, supporting market analysis,
prediction, and intelligent decision-making by training on vast amounts of financial data, greatly improving
efficiency and accuracy in the finance industry. These advancements have inspired us to explore the potential
applications of LLMs in recommendation systems.

2.2 LLMs for Recommendation

LLMs have surged in popularity, finding broad applications across numerous fields within artificial
intelligence [27]. This widespread success is largely due to their exceptional capabilities in understanding
and generating nuanced language semantics. In the context of RS, researchers are increasingly exploring
ways to harness the power of LLMs to boost recommendation quality. Efforts in this area generally fall into
two main categories. The first category focuses on using LLMs as an enhancement for traditional recom-
mendation systems. For example, the KAR model [28] taps into LLMs’ powerful semantic understanding
to extract deep insights about user preferences and item characteristics, which are then incorporated into
conventional recommendation frameworks, leading to improved recommendation performance. Similarly,
ONCE [29] enhances content-based recommendation systems by integrating open-source and proprietary
LLMs, drawing on the strengths of both to achieve more relevant and personalized recommendations.
The second category involves the direct application of LLMs to generate recommendations by leveraging
their advanced contextual understanding. TALLRec [17], for instance, employs the LoRA [30] method
to fine-tune LLMs specifically for recommendation tasks, enabling the model to provide personalized
suggestions. Meanwhile, A-LLMRec [31] combines collaborative filtering with static, frozen LLMs, using
both collaborative and textual information to enrich recommendation quality during inference. LLaRA [32]
integrates the item representations obtained from traditional sequential recommendation into the recom-
mendation process of LLMs, using a two-stage fine-tuning approach to improve recommendation quality.
In contrast to the aforementioned research, we first not only consider the item representations but also
take into account the user representations, capturing personalized user embeddings through traditional
sequential recommendation models. Second, we incorporate image information into the text part of the item
representation, leading to more accurate item representations. Finally, by combining LLMs with traditional
sequential recommendation models, we enable the LLMs to understand language semantics while capturing
collaborative semantics, resulting in more accurate recommendation outcomes.

2.3 Multi-Modal Large Language Models

Despite the impressive versatility and performance of LLMs in text processing tasks, most existing LLMs
are still limited to handling text inputs. However, information and knowledge do not exist solely in textual
form—visual, video, audio, and other modalities also contain rich data and information. With the ongoing
research, scholars have proposed Multimodal Large Language Models (MLLMs) that effectively integrate
text with these other modalities, aiming to overcome the limitations of single-modality models [33]. These
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models are designed to process and understand a wider range of inputs, facilitating a more comprehensive
understanding of the world. Recent studies on MLLMs have shown that the visual space can be aligned
harmoniously with the textual space, enabling models to perform language generation tasks conditioned on
visual input [34]. By aligning the visual and textual spaces, MLLMs can generate descriptions or answers
that are more contextually aware and rich in semantic detail. In addition to vision, other modalities such as
audio have also been incorporated into LLMs, allowing them to better digest and understand information
and knowledge from various modalities, thereby improving their performance in complex tasks [35].
The integration of multiple modalities enables these models to offer richer, more nuanced outputs that
leverage the complementary strengths of different types of data. Building on this research progress, we
incorporate item image information into the CIT-Rec model, providing a more intuitive representation of
items. This not only enhances our understanding of items but also, by combining the characteristics of
sequential recommendation systems, offers richer contextual information for recommendation tasks. In
doing so, we enable the model to leverage both visual and sequential interaction data, which improves the
accuracy and personalization of the recommendations. The incorporation of image data helps bridge the
gap between visual and textual information, enriching the semantic understanding of items and ensuring
that recommendations are more aligned with user preferences and behaviors. This multimodal approach
significantly enhances the performance of the recommendation system, making it more robust and capable
of delivering tailored, high-quality suggestions.

3 The Proposed Approach

In this section, we will specifically introduce the proposed CIT-Rec method, and the overall framework
of the model is shown in Fig. 1. The CIT-Rec model consists of three modules: (1) User Collaboration
Information Module, (2) Item Semantic Embedding Module, and (3) Fusion and Recommendation Module.
To more accurately represent users and capture their personalized preferences, we design a user collaboration
information module. Compared to text-based representations that can be naturally inserted into prompts and
easily understood by LLMs, ID-based user representations may be incompatible with the textual nature of the
prompts used by LLMs. Therefore, to bridge the modality gap, we map the ID-based user representation space
into the language space of LLMs. This consistency enables LLMs to interpret and leverage the behavioral
knowledge from users’ interaction history. To implement this idea, we train the user’s historical interaction
behavior data using traditional sequential recommendation models, which effectively capture ID-based
behavioral patterns. In the item semantic embedding module, to represent items more accurately, we align
the image information, which intuitively represents the items, with the textual information containing
semantic features to obtain item representations. First, we encode the item information from different
modalities. Then, to effectively capture higher-order signals of the items and obtain precise representations,
we use contrastive learning to extract item representations from both visual and textual modalities. By
treating matching image-text pairs as positive views and mismatched image-text pairs as negative views,
this method tightens the integration of item image and text embeddings in the feature space, allowing the
model to capture higher-order item signals. Finally, in the fusion and recommendation module, to enable
LLMs to understand the user and item representations obtained from the above two modules, we fuse
these representations into prompts. The prompts mainly contain task definitions, interaction sequences with
user and item representations, and a candidate set with item representations. The model then uses LoRA
fine-tuning to generate recommendation results.
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Figure 1: Overall framework of the CIT-Rec. CIT-Rec consists of three modules: (1) User collaboration information
module, (2) Item semantic embedding module, and (3) Fusion and recommendation module

3.1 User Collaboration Information Module

In order to more accurately represent users and capture their personalized preferences, we have designed
a user collaboration information module. Specifically, compared to text that can naturally insert prompts and
is easily understood by LLM, ID based user representation may not be compatible with the textual nature of
LLM prompts. Therefore, in order to bridge the modal gap, we map the user’s ID based representation space to
the language space of the LLM. This consistency enables LLMs to interpret and utilize behavioral knowledge
of user interaction history. To achieve the above idea, we adopt the traditional sequential recommendation
model SASRec [9]. After training on the user’s historical interaction behavior data, it can effectively capture
the user’s ID based behavior pattern. For user u, the ID based representation learned by the traditional
recommendation model is:

e, = SREMB (u;0,) )
Then, we use a multi-layer perceptron to map user embeddings to the desired dimensions, as follows:
emb, = MLP (e;0,u1,) (2)

3.2 Item Semantic Embedding Module

To obtain a more accurate and comprehensive item representation, we align visual features with textual
semantic information by integrating data from multiple modalities. For visual encoding, we leverage CLIP-
ViT-B/16, based on the CLIP framework proposed by Radford et al. [36], which learns visual representations
through large-scale supervision from raw image-text pairs. For textual encoding, we utilize Llama2-7B [23],
an instruction-tuned large language model pre-trained on extensive text corpora, which enables it to
effectively capture the semantic nuances of item descriptions. By combining these two modalities, we
construct a unified item representation that captures both visual and textual semantics.

To effectively capture the higher-order signals of items and obtain precise representations of items, we
employ a contrastive learning approach to derive item representations from both the visual modality and
the textual modality. Specifically, by treating image-text pairs of matching items as positive views and non-
matching image-text pairs as negative views, this approach allows the item’s image and text embeddings to
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become more tightly integrated in the feature space, enabling the model to capture higher-order item signals.
In this process, the contrastive loss can be expressed as follows:

3)

Leon = — Z log exp (COS(ei,eipas)/T)
(ivipossineg) = Dlipeg CXP (cos(ei,einzg)/-[)

where 7 is the temperature hyperparameter that controls the degree of contrastive learning, and iy,
represents negative samples, i,,, represents positive samples.

3.3 Fusion and Recommendation Module

To enable the LLM to comprehend the user and item representations obtained from the aforementioned
modules, we incorporate these representations into a carefully designed prompt and fine-tune the LLM
using LoRA to generate recommendation results. The prompt primarily includes three components: a
textual description of the recommendation task to define the objective, the user’s historical interaction
sequence with items enriched by the corresponding user and item representations, and a candidate item set
constructed using the item representations generated by the semantic embedding module. This integrated
prompt design ensures that the LLM can effectively leverage both user preferences and item semantics for
personalized recommendation.

Our prompt design captures users’ personalized preferences based on their interaction history, aligning
image information that intuitively represents items with text information containing semantic features to
better represent the items. This approach addresses the limitations of prompts that rely solely on IDs or text
data, leading to more accurate recommendations. An example of a specific prompt is shown in Fig. 2.

Instruction: Given the user's preference and
unpreference, identify whether the user will like
the target movie by answering Yes or No.

Input: User emb: emb,,. User preference: emb; ,
emb;, ,...User unpreference: emb;,, emb;, ,...
Whether the user will like the target item emb;,?
Output: Yes.

Figure 2: An example of a prompt. It includes task definitions, the user’s historical interaction lists and candidate item
in the input, as well as the output

Then, we use LoRA fine-tuning on the LLM to obtain recommendation results, with the objective of
seamlessly and efficaciously integrating the employed LLM with the specific nuances of the recommendation
task. Regarding the process of instruction tuning, we follow the conventional supervised fine-tuning
methodology, endeavoring to minimize the autoregressive loss derived from the discrepancy between the
actual values and the outputs generated by the LLM. In our approach, we obscure the absent positions
within the prompt. Nonetheless, directly fine-tuning the entire model poses a significant computational
burden and can be exceedingly time-consuming. To surmount this challenge, we introduce a streamlined
fine-tuning strategy employing the LoRA technique. This method entails immobilizing the parameters of the
pre-trained model while integrating trainable, rank-decomposed matrices into the fabric of each layer within
the Transformer architecture. This approach enables a more nimble tuning process, concurrently curtailing
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the consumption of GPU memory. The ultimate learning objective can be articulated as follows:

Iyl

max ». > log(Pyg, (yilx,y <t)) (4)
O (xy)ez =1

where 0 represents the LoRA parameters, and during the training process, we exclusively refine the
parameters associated with LoRA. Regarding the recommendation process, it is noteworthy that the model,
once trained, has assimilated the output format of the ground truth as specified, following a modest number
of alignment iterations, the answer parsing we designed is a simple approach. We capture the basic facts of
the softmax probabilities generated by the labels at the corresponding positions in the model output. Along
this line, the final prediction probabilities are calculated.

4 Experiments and Analysis

In this section, we first introduce the datasets and evaluation metrics, followed by a discussion of the
implementation details. Next, we present the baseline for this experiment. Then, we provide the experimental
results and compare them with the baseline. After that, we conduct an ablation study to analyze the
components of the model. Finally, we present a specific example of a recommendation made by the model.

4.1 Datasets and Evaluation Metric

Three benchmark datasets were used in the experiments, with their statistics shown in Table 1. The
Movie dataset is derived from MovieLensl00K [37]. Due to training time constraints, the dataset was then
split into a training set and a test set, with 80% allocated for training and 20% for testing. The Book dataset
is based on Book Crossing [38], which includes user ratings (on a scale of 1 to 10) and item descriptions.
For each user, we randomly selected one previously interacted item as the prediction target and extracted
ten items to represent the user’s historical interactions. The Beauty dataset is from Amazon [9] and includes
beauty and personal care product information, along with associated images and user ratings.

Table 1: Dataset statistics. “Inter” refers to the number of interactions in the dataset, which typically represents how
many times users have interacted with items. “Density” refers to the density of the dataset, which is the proportion of
possible interactions that are actually present

Dataset Users Items Inter. Density

ML-100K 610 3650 89K 4e-2
Book 278K 271K 1149K 1.5e-2
Beauty 233K 16K 276K 7.3e=5

We evaluate the task’s performance employing a conventional metric: the Area Under the Receiver
Operating Characteristic Curve (AUC). We eschew rank-based metrics in our assessment, as the fine-tuning
phase of the LLMs’ text sequence generation necessitates an understanding of the item sequence order’s
fundamental truths, an aspect that, in practice, is non-existent.

4.2 Implementation Details

In the user collaboration information module, for the generation of user representations, we use the
SASRec [9] model as a traditional sequential recommendation model for the experiment. In the item
semantic embedding module, for the generation of item representations, we harness the functionalities of
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CLIP-VIT-B/16 [36] to encode image information. Additionally, we utilize Llama2-7B [23] for encoding text
information. In the fusion and recommendation module, we apply LoRA fine-tuning on the Llama2-7B
model to obtain recommendation results. For the experimental dataset setup, we select 80% as the training
set and 20% as the test set. Regarding hyperparameter settings, for LoRA, r is set to 8, « to 32, dropout to
0.1, learning rate to 3e—4, and weight decay to le—4. We use the AdamW optimizer, set early stopping to 50,
train for 500 epochs, and use a random seed of 0. For contrastive learning, the temperature 7 is set to 0.07.
All experiments are conducted on a GPU: NVIDIA A800 Tensor Core GPU (80 GB).

4.3 Comparison Methods

We categorize the baseline models into three types: traditional sequential recommendation models,
graph-based recommendation models, and LLM-based recommendation models. These algorithms are then
compared with the proposed method.

Traditional sequential recommendation models include:

o BERT4Rec [3]: BERT4Rec uses bidirectional self-attention to model user behavior sequences. To avoid
information leakage and effectively train the bidirectional model, it adopts a Cloze objective for sequence
recommendation, where the context of items on both sides is jointly used to predict randomly masked
items in the sequence. In this way, a bidirectional representation model is learned, allowing each item in
the user’s historical behavior to integrate information from both sides for making recommendations.

o CL4SRec [8]: CL4SRec is a sequential recommendation contrastive model that not only leverages the
traditional next-item prediction task but also utilizes a contrastive learning framework to obtain self-
supervised signals from the raw user behavior sequences. As a result, it can extract more meaningful
user patterns and further effectively encode user representations.

o SASRec [9]: SASRec is a sequence-based recommendation model designed to predict the next item a
user is likely to be interested in, by leveraging their historical interaction data. It utilizes a self-attention
mechanism, which allows the model to capture long-range dependencies and sequential patterns in user
behavior, ultimately improving the accuracy of recommendations.

Graph-based recommendation models include:

o SGL [39]: SGL is a self-supervised graph learning method for recommendation, which alters the graph
structure using three strategies: node dropout, edge dropout, and random walks. It trains with auxiliary
self-supervised tasks to enhance node representations, thereby improving recommendation perfor-
mance. This method shows good performance on long-tail items and in handling interaction noise.

o XSimGCL [40]: XSimGCL abandons traditional graph enhancement methods and instead uses noise
based embedding enhancement to generate contrastive learning views. XSimGCL believes that contrast
loss (InfoNCE) is the key to improving recommendation performance, while graph enhancement has a
relatively small effect.

LLM-based recommendation models include:

o Zero-Shot CoT [41]: This is a method based on LLM that uses LLM for recommendation. It directly
queries the original LLM for recommendations using prompts.

o TALLRec [17]: TALLRec is an efficient tuning framework designed to optimize the operational capabili-
ties of LLMs in recommendation systems. By going through two stages of tuning, the framework enables
LLMs to better adapt to recommendation tasks.
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4.4 Main Results

This segment is primarily dedicated to assessing the performance of the proposed approach in com-
parison with established benchmark methodologies. Table 2 reports the first sets of results, where the
recommendation performance of all schemes are compared. In Table 2, we compare the proposed method
with three categories of baseline models used for sequential recommendation. The first category consists
of traditional sequential recommendation models, including BERT4Rec [3], CL4SRec [8], and SASRec [9].
These models rely on sequential data patterns to make predictions. The second category includes graph-
based recommendation models. Since previous graph-based recommendation models have demonstrated
excellent performance in similar tasks, we selected two representative models in this category: SGL [39] and
XSimGCL [40]. These models leverage graph structures to model relationships between users and items, thus
enhancing the recommendation process. The third category is composed of LLM-based recommendation
models, including Zero Shot CoT [41] and TALLRec [17]. Zero Shot CoT directly uses prompts to make
LLM provide recommended answers. TALLRec is an efficient fine-tuning framework designed to improve
the performance of LLMs within recommendation systems. By applying a two-stage fine-tuning process,
TALLRec enables LLMs to better adapt to the specific needs of recommendation tasks, improving their
accuracy and relevance.

Table 2: Overall performance comparison (AUC). The baseline models are divided into three categories, with the
bolded results representing the optimal outcomes and the underlined results representing the second-best outcomes

Category Model Movie Book Beauty
BERT4Rec 69.1+1.2 794+08 70.8+0.6
Sequential CL4SRec 68.0+1.0 762+0.7 681x03
SASRec 61.4 + 0.9 721+ 15 68.6 + 0.5
SGL 714 £ 1.5 62.0 £ 1.0 73.4+0.9

Graph-Based XSimGCL 571+ 1.3 559 + 0.7 729 +1.7

Zero-Shot CoT  56.9 +2.2 578 £ 1.6 63.1+28
LLM-Based TALLRec 72.4 £ 0.9 731+0.3 75.7 £ 0.5
CIT-Rec (Ours) 95.7+0.8 935+1.0 85.7+0.9

In Table 2, the optimal experimental results are bolded, while the second-best results are underlined.
From a comprehensive analysis of the experimental results, it is evident that the method based on fine-
tuning LLM outperforms traditional sequential recommendation techniques, graph based recommendation
methods, and direct use of prompts in a wide range of evaluation metrics. Particularly noteworthy are the
substantial improvements in AUC values observed on both datasets. This robust performance underscores
the efficacy of utilizing LLMs to capture nuanced user interaction patterns and item semantic information,
thereby facilitating the delivery of highly personalized and contextually relevant recommendations. These
findings highlight the considerable advantages and versatility of this approach in various recommenda-
tion contexts.

Furthermore, our proposed method consistently surpasses all three categories of baseline models.
Across the three datasets, our method exhibits marked enhancements over the next best models, under-
scoring its superior capability to detect and model complex patterns within users’ continuous behavior
sequences. This enhanced modeling capacity leads to more relevant and accurate recommendations, signif-
icantly enhancing user satisfaction and engagement. Additionally, the consistent and strong performance
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demonstrated across different datasets further validates the robustness, adaptability, and generalizability of
our approach. It effectively handles diverse types of data and user interaction behaviors, illustrating its broad
applicability and effectiveness across a wide range of recommendation scenarios and domains.

The relatively smaller improvement in the Beauty dataset, compared to the Movie and Book datasets,
can likely be attributed to its shorter interaction sequences. These shorter sequences may limit performance
gains by providing less data for the model to learn from, potentially constraining its ability to capture complex
user preferences and behavior patterns. Despite these limitations, our proposed method still outperforms the
baseline models across all three datasets. This consistent superiority underscores its ability to deliver high-
quality, effective recommendations even under varying conditions and across diverse domains. Nonetheless,
overall, our proposed method outperforms the baseline models in all three datasets, demonstrating its ability
to deliver high-quality and effective recommendations across diverse domains. The results highlight the
robustness and versatility of our model, confirming its potential to revolutionize recommendation systems
by integrating advanced techniques and information sources.

In addition, we evaluated the inference efficiency of our proposed CIT-Rec against various baselines, as
summarized in Table 3. The column “Avg” denotes the average inference time for non-LLM and LLM-based
models on the Book dataset. As observed, models without LLM components yield much faster inference,
while LLM-based ones consume noticeably more time. This performance gap mainly arises from the sub-
stantial number of parameters and the intricate attention operations within LLMs. Nevertheless, LLM-based
methods demonstrate markedly higher AUC results in our experiments, highlighting their stronger capa-
bilities in semantic representation and user intent comprehension. In essence, LLM-based recommenders
trade a certain level of inference efficiency for a considerable gain in recommendation accuracy.

Table 3: Model inference time on a recommendation task (in seconds)

Type w/o LLM-based models LLM-based models
Model = BERT4Rec SGL  XSimGCL  Avg. Zero-Shot  TALLRec CIT-Rec  Avg.
Time (s) 0.0001 0.0001 0.0001 0.0001 0.0149 0.0152 0.0153 0.0151

4.5 Ablation Study

To investigate the effectiveness of the user collaboration information module and the item semantic
embedding module, we designed two ablation experiments for comparison with our proposed model, and
the results are shown in Fig. 3. In Fig. 3, “w/o user” refers to the model without the user collaboration
information, and “w/o image” refers to the model where the image information is removed from the item
semantic embedding module, leaving only text information to represent the items. These experiments were
designed to isolate and evaluate the impact of each individual module on the overall performance of the
recommendation system.

Based on the experimental results, we can see that our proposed method outperforms both ablation
experiment setups. Specifically, compared to the model without user information, the improvement in AUC
values across three datasets indicates that the incorporation of user collaboration information significantly
enhances the model’s ability to make accurate recommendations by leveraging user interaction patterns and
preferences. Compared to the model without image information, the improvement in AUC values across
three datasets demonstrates the critical role of image information in capturing the semantic features of items,
particularly for content that benefits from visual cues such as movies and beauty products.
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Figure 3: Ablation study. “w/o user” refers to the model without the user collaboration information, and “w/o image”
refers to the model where the image information is removed from the item semantic embedding module, using only
text information to represent the items

From this analysis, we can conclude that the user collaboration information module and item semantic
embedding module in our method do indeed improve the accuracy of recommendations, validating the
importance of both user-specific and item-specific information in enhancing the performance of recommen-
dation systems. The results suggest that our approach can effectively combine multiple sources of information
to generate more personalized and contextually relevant recommendations.

4.6 Case Study

We provide a recommendation example from the proposed model, as shown in Fig. 4. On the left side is
the user’s interaction history, with a check mark indicating movies the user likes and a cross mark indicating
movies the user dislikes. On the right side are the recommendations made by the model.
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Figure 4: A case study. On the left side is the user’s interaction history, with a check mark indicating movies the user
likes and a cross mark indicating movies the user dislikes. On the right side are the recommendations made by the
model

Specifically, in the user’s interaction history, the movies the user likes include “True Romance, Meet John
Doe, Up in Smok, Die Hard 2, Jaws, It Could Happen to You, Gone with the Wind, and Psycho”. The movies
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the user dislikes include “Fantasia and Breakfast at Tiffany’s”. Based on the user’s interaction history, we can
see that the user prefers emotionally rich, adventurous, suspenseful, and action-oriented movies, and dislikes
animated and romantic love stories. The films that appeal to the user tend to have strong emotional depth,
fast-paced action, and a sense of thrill or danger, reflecting a preference for high-energy experiences that
involve intense personal or situational conflict.

Furthermore, the model’s recommendations align with our analysis. The user likes “Top Gun”, a classic
action film about a pilot’s adventure and challenges, with strong suspense and action elements. The movie
features high-octane action sequences, intense emotional stakes, and a focus on personal growth, all of which
are likely to resonate with the user’s preferences. On the other hand, the user dislikes “The Powerpuff Girls
Movie”, an animated movie. This recommendation is consistent with the user’s clear aversion to animated
films, particularly those with a lighter, more fantastical tone, such as this one. The model’s ability to accurately
recommend “Top Gun” and avoid “The Powerpuft Girls Movie” demonstrates its deep understanding of the
user’s taste and behavior, as well as its capacity to effectively match user preferences with appropriate content.

5 Conclusion and Future Work

In this paper, we propose a recommendation system framework based on LLM, named CIT-Rec, which
enhances the ability of LLM to better understand users and items, leading to more accurate recommenda-
tions. Specifically, CIT-Rec utilizes a user collaboration information module to capture personalized user
preferences from their interaction history and generates personalized user embeddings. It then uses an
item semantic embedding module, aligning the image information that intuitively represents the items
with the semantic features contained in the text to obtain precise item representations. These user and
item embeddings are then fed into a fusion and recommendation module, which constructs prompts based
on the embeddings from the user collaboration information module and the item semantic embedding
module. The LLM is fine-tuned using LoRA to generate the final recommendation results. Extensive
empirical evaluations on various real-world datasets show that the proposed model outperforms the baseline,
effectively combining user historical interactions with the visual and textual modalities of items to jointly
model and provide personalized recommendations. Ablation experiments also demonstrate the importance
of image information in our proposed user collaboration information module and item semantic embedding
module. Finally, we provide a specific example of how to use the CIT-Rec model for recommendations.
Although CIT-Rec achieves promising results, it still has certain limitations, such as increased computational
cost and training time introduced by multimodal fusion. Addressing these issues in future work could further
enhance the efficiency and generalization capability of our framework.
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