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ABSTRACT: Message structure reconstruction is a critical task in protocol reverse engineering, aiming to recover
protocol field structures without access to source code. It enables important applications in network security, including
malware analysis and protocol fuzzing. However, existing methods suffer from inaccurate field boundary delineation
and lack hierarchical relationship recovery, resulting in imprecise and incomplete reconstructions. In this paper,
we propose ProRE, a novel method for reconstructing protocol field structures based on program execution slice
embedding. ProRE extracts code slices from protocol parsing at runtime, converts them into embedding vectors using
a data flow-sensitive assembly language model, and performs hierarchical clustering to recover complete protocol field
structures. Evaluation on twodatasets containing 12 protocols shows that ProRE achieves an average F1 score of 0.85 and
a cophenetic correlation coefficient of 0.189, improving by 19% and 0.126% respectively over state-of-the-art methods
(including BinPRE, Tupni, Netlifter, andQwQ-32B-preview), demonstrating significant superiority in both accuracy
and completeness of field structure recovery. Case studies further validate the effectiveness of ProRE in practical
malware analysis scenarios.

KEYWORDS: Protocol reverse engineering; program slicing; code embedding; hierarchical clustering

1 Introduction
Protocol Reverse Engineering (PRE) reconstructs protocol functionality by parsing the structure and

semantics of communication messages, with increasingly widespread applications. In network security, PRE
is used to analyze malware communication mechanisms and traffic characteristics [1], helping security
researchers understand attackers’ command and control protocols. In IoT security, where numerous devices
use proprietary protocols lacking documentation, PRE becomes essential for discovering security vulnera-
bilities. In threat detection, it facilitates understanding and monitoring of unknown applications’ network
behavior. As protocols become increasingly encrypted and complex, traditional manual analysis has become
inadequate, making automated PRE techniques crucial.

Message structure recovery is one of the most fundamental tasks in PRE, providing crucial support
for further inferring protocol semantics and state machines. Its primary goal is to reconstruct the message
structure of communication protocols without access to source code. Depending on the application scenario,
methods are typically classified into Network Trace-based (NetT-based) [2,3] and Execution Trace-based
(ExeT-based) [4–8] approaches. NetT-based methods parse field formats through statistical analysis of
captured traffic data, but often perform poorly with insufficient traffic samples. Our research focuses on
ExeT-based methods, which achieve relatively accurate recovery by dynamically tracing message processing
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without requiring large amounts of traffic.However, existing ExeT-basedmethods face significant limitations
in inference effectiveness. Two key challenges persist:

• First, unreasonable boundary delineation methods lead to inaccurate recovery. Field division relies on
precise byte representation forms, yet existing methods typically employ only low-level features as
approximations, such as program operator [4] or basic block [5] sequences. Without high-level abstrac-
tion of protocol semantics, these approaches are prone to errors when representing complex programs.

• Second, absence of hierarchical relationship recovery results in incomplete message structures.Multiple rela-
tionships exist among message fields [6], yet existing methods focus solely on sequential relationships,
overlooking parallel and nested relationships. This limitation prevents complete restoration of message
structures and comprehensive evaluation metrics.

To address these challenges, we propose ProRE, a novel method for Protocol field structures
Reconstruction based on program execution slice embedding. ProRE precisely extracts code execution
slices from the protocol parsing process at runtime, converts them into high-dimensional semantic vectors
using a data flow-sensitive assembly language model, and introduces hierarchical clustering algorithms
to iteratively aggregate these vectors, thereby completely recovering protocol field structural relationships
including nesting and parallelism. This method achieves precise characterization of field boundaries by
mapping program semantics to vector space, and reconstructs the protocol’s inherent structure through
hierarchical clustering trees, significantly improving recovery accuracy and completeness.

We summarize our contributions as follows:

• We propose a protocol message structure reconstruction method based on execution slice embedding,
integrating protocol reverse analysis and program semantic analysis through code slice embedding and
hierarchical clustering to address inaccurate and incomplete field recovery challenges.

• We develop a data flow-sensitive assembly language model that converts execution code slices into
embeddings, achieving precise characterization of protocol field semantics.

• We introduce hierarchical clustering to protocol field recovery tasks for the first time, which can not only
divide sequential fields but also restore structural relationships. We also propose a structured evaluation
method using the cophenetic correlation coefficient for comprehensive protocol structure assessment.

• We design and implement the ProRE. Evaluation on two datasets containing 12 protocols shows that
ProRE achieves an average F1 score of 0.85 and a cophenetic correlation coefficient of 0.189, improving
by 19% and 0.126% respectively over state-of-the-art methods (including binpre, tupni, netlifter, and
QwQ-32B-preview), demonstrating significant superiority in both accuracy and completeness of field
structure recovery. Case study shows that ProRE effectively applies to practical malware analysis sce-
narios, successfully identifyingDuke steganographic data andMirai botnet protocol message structures.
We also open-source this work to facilitate future research.

The remainder of this paper is organized as follows. Section 2 reviews related work in code embedding
and protocol field recovery, highlighting existing gaps. Section 3 presents background knowledge and
motivates our approach through concrete examples. Section 4 details our methodology, including execution
code slicing, slice embedding, andhierarchical clustering techniques. Section 5 describes the implementation
details. Section 6 presents comprehensive experimental evaluation, including performance comparisons,
ablation studies, and case studies on real malware. Section 7 discusses time consumption, generalization
capability, and limitations. Finally, Section 8 concludes the paper and outlines future research directions.
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2 Related Work
This section reviews existing approaches in code embedding and protocol field recovery, examining

their techniques and limitations to establish the context for our proposed method.

2.1 Code Embedding
Code embedding is a program representation method that achieves semantic abstraction by converting

program code into numerical vectors, commonly applied in code similarity detection and vulnerability
analysis. These methods treat code as natural language, learning embedding representations by training
deep learning models. The most intuitive embedding method is one-hot encoding [9,10], which uses
fixed-dimension vectors to map instructions, but limited by abstraction capability, cannot fully represent
syntactic and semantic information. Someworks [11–14] analogize instructions and basic blocks towords and
sentences, respectively, constructing code embedding vectors through representation learning with strong
generality. However, they cannot capture semantics of specific code fragments and lack abstraction of data
flow relationships.

This paper constructs a data flow-sensitive assembly language model to convert slice code of protocol
processing into embedding vectors, better representing execution semantics of communication programs
and supporting protocol analysis.

2.2 Protocol Field Recovery
Protocol Reverse Engineering (PRE) infers network protocol specifications from traffic or program

binaries [15,16], enabling applications like traffic classification [17] and protocol vulnerability detection [4,5].
Field structure recovery is one of the core tasks, typically divided into two categories based on application
scenarios. NetT-based methods [2,3] infer message formats through statistical analysis of traffic. However,
their accuracy depends on rich, high-quality traffic, which is difficult to obtain in practice. ExeT-basedmeth-
ods [4–8] do not rely on traffic data, identifying field boundaries by dynamically analyzing communication
program execution traces and clustering semantically similar bytes. However, their recovery results remain
inaccurate or incomplete.

BinPRE [4], the current state-of-the-art, approximates field semantics through operator sequences
extracted during protocol parsing. However, these low-level features fail to capture complex program seman-
tics, leading to frequent field over-segmentation when execution sequences differ significantly. Tupni [7]
employs taint analysis for data tracking but cannot handle nested field structures, limiting its applicability to
modern protocols. AIFORE [5] utilizes basic block analysis for rapid processing but lacks the semantic depth
required for accurate boundary detection. AutoFormat [6] combines instruction addresses with function call
stacks to achieve comprehensive tracing, yet suffers from excessive computational overhead and tendency
toward over-segmentation. Netlifter [18] attempts static analysis to avoid runtime costs but misses critical
dynamic execution paths essential for accurate protocol reconstruction.

We improve field structure recovery performance through: (1) embedding code slices as representations
in semantic space; (2) applying hierarchical clustering algorithms to restore message formats.

3 Background and Motivation
In this section, we introduce the underlying background, key concepts, and the motivation that drives

our proposed approach.
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3.1 Problem Description
We consider the following scenario: a security analyst needs to determine the protocol message format

of a network communication program.They cannot obtain source code or protocol specification descriptions
in any form. They possess a binary executable without source code or debug symbols that can be correctly
disassembled and decompiled. This program can run on a dynamic instrumentation platform to record
message exchanges with communication peers. While our method is architecture-agnostic, we assume the
program runs on Windows x86 for evaluation purposes.

3.2 Background
Protocol Reverse Engineering

Protocol reverse engineering infers protocol specifications by analyzing network traffic or program
execution behavior without protocol documentation. Protocol specifications typically contain three core
elements: Message Format, Protocol Semantics, and State Machine. Message format defines the structured
organization of messages, including field boundaries, types, and hierarchical relationships; protocol seman-
tics describes the meaning and processing logic of each field; state machine characterizes the protocol
dynamic behavior and state transition rules. This paper focuses specifically on message format recovery.
Program Slicing

Program slicing is a program analysis technique that extracts statement subsets related to specific
computations from programs, such as protocol parsing portions in communication programs. For a given
slicing criterion (typically a program location and variable), a program slice contains all statements that may
affect that variable’s value. In dynamic program slicing, slices are computed based on specific execution paths,
enabling more precise capture of actual data dependencies. Dynamic slicing typically follows these steps:
(1) Execute the program and record execution traces; (2) Construct dynamic data dependency graphs; (3)
Collect relevant statements by traversing the dependency graph backward from the slicing criterion.
Code Representation Learning

Code representation learning maps program code into continuous vector space such that semantically
similar code fragments are proximate in vector space. Early methods primarily encoded programs based
on structural features (such as abstract syntax trees and control flow graphs). Recently, inspired by natural
language processing advances, researchers have applied deep learning techniques to code understanding
tasks. The Transformer architecture demonstrates excellent performance in code representation learning
due to its powerful sequence modeling capabilities. Through pre-training tasks (such as masked language
models), models learn code syntactic structures and semantic patterns.

3.3 Motivation
Existing protocol field recovery methods face significant challenges in accurately identifying field

boundaries and recovering hierarchical structures. To illustrate these limitations, we analyzed message field
parsing results on an example communication program. Fig. 1 demonstrates how current state-of-the-art
methods perform, where binpre [4] represents the latest ExeT-based approach and AutoFormat [6] serves
as a classic baseline.



Comput Mater Contin. 2026;86(3):37 5

Figure 1: Message parsing results of existing methods on communication sample

Challenge 1 (C1): Existing methods employ inadequate boundary delineation approaches, resulting in
inaccurate recovery.

Field division is typically considered a message byte clustering process [4], where bytes with similar
semantics merge into protocol fields. Existing methods approximate these semantics through low-level
program features during protocol parsing, such as instruction addresses, function call stacks, with data
reference records [6], or operator sequences [4]. However, since these features cannot accurately reflect
program semantics, errors frequently occur. As shown in Fig. 1, when execution sequences corresponding
to different bytes of the same field differ significantly, excessive clustering and field over-segmentation
may result, such as bytes 7–10 and 12–15 recovered by AutoFormat. Conversely, highly similar execution
sequences may cause under-segmentation errors, such as bytes 10 and 11 recovered by binpre.

Recent advances in code pre-trained language models [11–13] provide opportunities for precisely
representing program semantics. In this paper, ProREdesigns a data flow-sensitive assembly languagemodel
to convert program traces into embedding vectors as abstract byte representations. This approach better
abstracts program semantic features, thereby improving field division accuracy.

Challenge 2 (C2): Existing methods lack hierarchical relationship recovery, resulting in incomplete message
structures.

Multiple relationships exist among message fields [6], yet existing methods focus solely on sequential
relationships, ignoring parallel and nested relationships. This limitation prevents complete restoration
of message structures and comprehensive evaluation metrics. As shown in Fig. 1, neither binpre nor
AutoFormat recover the nested message structure.They divide all bytes into field clusters at the same level,
creating difficulties for inferring field semantics and understanding message structures.

To address this challenge, we introduce hierarchical clustering methods to message field recovery for
the first time. ProRE gradually restores messages inherent structure by iteratively clustering fields. As shown
in Fig. 1, it completely extracts nested results (light blue and light yellow fields) and parallel structures (dark
blue and dark yellow fields). Additionally, we introduce structured evaluation methods for field recovery,
providing comprehensive assessment of message parsing results.

We have also analyzed existing similar works, as shown in Table 1, and they generally have the problems
involved in the above two challenges. Among them, although tupni supports the recovery of some cross-
field dependencies and netlifter can partially extract the structural relationships existing in decompiled
code, they are not as complete and accurate as ProRE.
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Table 1: Summary of existing approaches and the challenges

Method Venue C1 C2
binpre [4] CCS’24 ✗ ✗

tupni [7] CCS’08 ✗ ◯
aifore [5] USENIX SEC’23 ✗ ✗

AutoFormat [6] CCS’08 ✗ ✗

netlifter [18] CCS’23 ✗ ◯
ProRE (This paper) ✓ ✓

Note: ✓: resolved, ✗: unresolved, ◯: partially
resolved.

4 Methodology
Our methodology addresses the fundamental challenges in protocol field recovery through a

three-phase approach that progressively transforms program execution traces into structured protocol
representations. Fig. 2 presents the overall framework of ProRE, which consists of three integrated phases:
execution code slicing (Section 4.1), slice embedding (Section 4.2), and hierarchical clustering (Section 4.3).

Figure 2: Overall framework of ProRE. It takes a communication program as input and outputs inferred protocol field
structures via three main phases

4.1 Execution Code Slicing
Formally, for communication program P, we define the following:

Definition 1 (Message Byte-GuidedCode Slice):Given a slicing criterion θ = ⟨ f0, i , M⟩, where f0 is a reception
point in P related to the i-th byte of received message M (1 ≤ i ≤ ∣M∣), this criterion specifies extracting all basic
blocks with data flow dependencies on the i-th byte starting from f0. We denote the set of basic blocks satisfying
θ as the message byte-guided code slice Si .

For clarity, we describe the message reception process by default; the technical principles for the sender
remain consistent. To accurately extract code fragments from the protocol parsing process, we perform
hybrid static-dynamic analysis on the communication program, then extract code slices as shown in Fig. 3.
Specifically, we first record disassembled instruction sequences indexed by address on the static analysis
engine, along with basic blocks (BBLs) and functions information. To separate slice sets S corresponding to
different message bytes, ProRE executes a code slice extraction algorithm, as shown in Algorithm 1.
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Figure 3: Slice extraction process. Colors identify processing code for different message bytes

Algorithm 1: Code slice extraction
1: S ← ∅, Cache← ∅
2: L, context← Execute(P, M , f0)
3: function ExtractDataFlow (l, ctx)
4: t ← InitTemplate()
5: if t in Cache then
6: return t
7: end if
8: SetContext(ctx)
9: for i = 1 to ∣l∣ do
10: t[i] ← GetTemplate(l[i])
11: Cache.update(t)
12: end for
13: return t
14: end function
15: for i = 1 to ∣M∣ do
16: Si ← ∅
17: for j = 1 to ∣L∣ do
18: t ← ExtractDataFlow(L [j], context [j])
19: Si ← Si + ExtractSlice(t, i , θ)
20: end for
21: end for
22: return S

Slice extraction accuracy directly affects subsequent analysis quality. Traditional static slicing methods
often produce excessive code due to path explosion and pointer alias analysis difficulties. While dynamic
slicing offers greater precision, it requires balancing execution efficiency and coverage. We adopt a hybrid
strategy: collecting necessary runtime information through lightweight online instrumentation, then per-
forming detailed data flow analysis offline. This design ensures both analysis accuracy and minimal impact
on program execution.

Specifically, ProRE first performs Dynamic Binary Instrumentation (DBI) on the program, recording
execution traces and context data after receiving messages. Then, ProRE traverses basic blocks on the
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execution path, extracting code slices based on data flow templates. Templates record data propagation
relationships during each basic block’s execution. Tominimize impact on actual program execution, ProRE’s
template generation occurs offline and employs caching mechanisms to prevent repeated analysis. We
introduce a cachingmechanismbased on the following observation: a significant portion of data flow analysis
time is spent analyzing internal instructions of known APIs, whose data flow propagation relationships are
well-documented. Based on these specifications, we manually extracted and compiled 1684 API semantic
summaries from commonly used standard libraries, containing information about parameter variable types
and data flow propagation directions. This approach alleviates unnecessary overhead in data flow analysis.

4.2 Slice Embedding
Recent advances in code pre-trained language models [11–13] provide new opportunities for precisely

representing program semantics. These models learn not only syntactic structures but also highly abstract
semantics by converting code into vector representations. Inspired by this progress, we design a data flow-
sensitive assembly language model as shown in Fig. 4, which represents byte semantics by converting code
slices into embedding vectors to better support field recovery.The fundamental assumption is that amapping
exists from program code space to abstract semantic space that equivalently expresses program semantics in
vector space. We approximate this semantic mapping through an attention mechanism-based Transformer
encoder-decoder model.

Figure 4: Architecture of the data flow-sensitive assembly language model
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Building code embeddingmodels that meet protocol reverse analysis requirements presents challenges.
Unlike general code language models, communication program analysis requires greater focus on message
processing, particularly data flow relationships between instructions, which existing methods have not
achieved. Therefore, we construct a data flow-sensitive assembly language model with specialized input
encoding layers and training strategies.
Input Encoding Layer

As shown in Fig. 4, the model’s input comprises four encoding components. BPE Assembly (ASM)
Token employs byte pair encoding to tokenize assembly instructions and builds a 30 K-token vocabulary.
Taint Weight Coefficient calculates each instruction’s impact weight on message bytes based on taint analysis
results, enabling the model to focus on code fragments closely related to message processing while excluding
irrelevant segments. This coefficient is calculated from the intersection size between memory regions
read/written by instructions and message input taint regions. Call Stack Depth helps the model understand
instructions relative positions in the program, as code at the same hierarchical depth typically exhibits closer
semantic relevance. We set the program entry point as the initial stack bottom and return instructions
relative offset on the function call stack. Position encodes instructions absolute order. To balance training
efficiency and effectiveness, we set the maximum sequence length to 1024 tokens, with exceeding instruction
tokens truncated.
Training Tasks

We enhance the model’s awareness of program semantics in message processing through three pre-
training tasks.

• Masked Language Model (MLM): This task captures assembly instruction syntax fundamentals. Fol-
lowing standard MLM settings [19], we randomly select 15% of tokens for masking: 80% replaced by
[MASK] tokens, 10% replaced by random tokens, and 10% unchanged. By predicting masked original
tokens, themodel learns syntactic structures and contextual semantics of assembly instructions.The loss
function is:

LMLM = − ∑
i∈M

log P(xi ∣x/i)

where M denotes masked positions, xi represents the token at position i in the sequence, and x/i
represents all tokens except position i.

• Context Window Prediction (CWP): This task captures program control dependencies by predicting
whether two instructions co-occur within the same control branch’s influence range. For instructions
ia and ib , we calculate their shortest path distance in the control flow graph. If the distance is less than
predefined window size w, they are marked as positive samples; otherwise negative. Through binary
classification, the model learns control flow dependencies between instructions:

LCW P = − ∑
(ia , ib)

[y log p + (1 − y) log(1 − p)]

where y ∈ {0, 1} indicates whether they share the same window, and p is the model’s predicted proba-
bility.

• Def-Use Prediction (DUP): This task explicitly models data dependencies between instructions. Fig. 5
shows a decompiled code fragment of Mirai attack message parsing, where “len” is a masked message
field from which we extract Def-Use relationships on its data dependency graph. For statement i that
defines or uses a memory location, we extract code with data dependencies. We enhance the model’s
attention to message processing code by adding a specialized “Dataflow SeeingMatrix” atop the model’s
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original attention matrix. Attention weights are assigned based on data dependency proximity: code
with direct message data dependencies receives weight 1.0, while connected adjacent code receives 0.2
to radiate attention. During training, we adopt a contrastive learning framework: for positive samples
(ground truth Def-Use pairs), the model outputs high similarity; for negative samples (randomly
sampled pairs), the model outputs low similarity. The loss function is:

LDU P = ∑
(i , j)∈D+

max(0, γ − s(hi , h j)) + ∑
(i ,k)∈D−

max(0, s(hi , hk) − γ)

where D+ and D− are positive and negative sample sets, s is the similarity function, γ is the margin
parameter, and h is the hidden layer representation of instruction i. Attention matrix weights are directly
added for computation.

Figure 5: Def-Use prediction task with dataflow seeing matrix. Green positions indicate code fragments receiving
model focus, with darker colors indicating higher attention weights

The total training objective combines three tasks as a weighted sum:

Ltotal = λ1LMLM + λ2LCW P + λ3LDU P

where λ1, λ2, λ3 are trainable parameters. The model training process takes assembly sequences corre-
sponding to functions as samples, inputs them through the encoding layer, executes pre-training tasks, and
learns assembly language syntax and semantics to provide higher-quality semantic representations. During
inference, the model takes program execution code slices as input and outputs corresponding embedding
representation vectors.

4.3 Hierarchical Clustering
Considering the inherent hierarchical structure of protocol messages [6], we represent fields using

sets and express field nesting relationships through set inclusion. Our core insight is that the process of
deconstructing nested fields naturally reflects message structure. Processing traces of different sub-fields
within the same parent field exhibit greater similarity than those across different parent fields. By comparing
semantic similarities between different bytes, we can restore message nested structure. To achieve field
structure recovery, we introduce hierarchical clustering methods.

Hierarchical clustering is an unsupervised learning method that organizes data by constructing nested
cluster hierarchies. It begins with each data point as a separate cluster, iteratively merging the most similar
cluster pairs until all data points belong to a single cluster. This method offers several advantages: (1) no
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requirement to pre-specify cluster numbers; (2) ability to reveal multi-scale data structures; (3) generated
dendrograms intuitively display data hierarchical relationships. In protocol analysis scenarios, hierarchical
clustering particularly suits capturing nested protocol field structures.

ProRE’s hierarchical clustering process is described inAlgorithm2.The core concept builds hierarchical
structures by iteratively merging field classes with the closest semantics. Taking slice embeddings repre-
senting byte semantics as input, it performs clustering by calculating distances at different levels to recover
field structures.

Algorithm 2: Field structure recovery based on hierarchical clustering
1: m ← ∣S∣, k ← m
2: for i = 1 to m do
3: ri ← δ(Si) ⊳ Compute semantic embedding for byte i
4: end for
5: Rm ← {C1 ,C2, . . . ,Cm}, where Ci = {ri}, i = 1, 2, . . . ,m
6: while k > 1 do
7: Compute the distance d(Ci ,C j) between any two classes Ci and Cj
8: (Cp ,Cq) ← argmin

Ci ,C j∈C , i≠ j
d(Ci ,C j) ⊳ Find closest clusters

9: Cnew ← Cp ∪ Cq ⊳Merge clusters
10: Rk−1 ← (Rk−1/{Cp ,Cq}) ∪ Cnew ⊳Update cluster set
11: k ← k − 1
12: end while
13: T ← {R1 , R2, . . . , Rm}
14: return {T}

Definition 2 (Abstraction Extraction Function): For element p in the program concrete domain and element
r in the semantic abstract domain, the abstraction function is:

δ(p) = r, (p ∈ P, r ∈ R) (1)

where r represents the abstract semantic representation of p under Galois connection.

For code slice Si corresponding to the i-th message byte, ProRE employs the assembly language
model as the abstraction extraction function δ to compute embedding ri . We then formalize field structure
recovery as a hierarchical clustering process on slice embeddings. Let the complete set of m slice embedding
representations be: Ω = {r1 , r2, ⋅ ⋅ ⋅ , rm}.
Definition 3 (n–cluster): Let Ln be a set consisting of n arbitrary subsets C of Ω (Ci ⊆ Ω, i = 1, ⋅ ⋅ ⋅ , n). If:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ci ≠ ∅
⋃n

i=1 Ci = Ω
Ci ∩ C j = ∅, i ≠ j, j = 1, 2, ⋅ ⋅ ⋅ , n

(2)

then Ln is an n-cluster of Ω. For any two clusters Lp and Lq of Ω, where p > q, if each class in Lp is a subset of
some class in Lq, then Lp is nested in Lq, denoted as Lp ⊑ Lq .

Our goal is to generate the field cluster tree T, represented as anm-leaf binary tree withmultiple levels Li ,
each level consisting of one or more field classes. As shown in Fig. 6, field cluster tree T = {Li}, i = 1, ⋅ ⋅ ⋅ , 5,
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where L5 ⊑ L4 ⊑ L3 ⊑ L2 ⊑ L1.We calculate semantic similarity between different bytes through the following
distance as the basis for clustering:

Figure 6: Field cluster tree

Definition 4 (Semantic Distance):

dCi ,C j =
∑x∈Ci ∑y∈C j dx y

∣Ci ∣∣C j∣
(3)

The hierarchical clustering process starts from m isolated field classes, each class mapping to single byte
semantics.Then, it iteratively merges the closest classes in a bottom-upmanner until reaching the root node.
Specifically, in each iteration, based on the distance calculated by Eq. (3), the two closest classes among the
current k field classes are merged to form new k − 1 field classes. The final output T contains field structures
with complete hierarchical relationships.

5 Implementation
ProRE uses IDA Pro [20] and Intel Pin [21] as static and dynamic analysis engines, respectively.

The assembly language model consists of a 12-layer Transformer encoder-decoder. Each layer contains
standard multi-head self-attention mechanisms and feed-forward neural network (FFN) modules. The
attention mechanism uses 12 attention heads, and the FFN layer uses GELU activation function. To enhance
generalization capability, we apply Dropout (rate = 0.1) in attention and FFN layers. During pre-training, we
use FP16 mixed precision training for acceleration with a batch size of 256. The learning rate peak is set to
5e-4 with linear warmup. We set λ1 = 1.0, λ2 = 0.5, λ3 = 0.5.

6 Evaluation
Our evaluation aims to answer the following research questions:

• RQ1: What is the overall performance of ProRE in field structure recovery?
• RQ2: How does ProRE compare with other baseline methods?
• RQ3: Are the implementations of ProRE’s modules beneficial for improving effectiveness?
• RQ4: How effective is ProRE in real-world tasks?

6.1 Setup
This section introduces the datasets, baseline methods, and metrics for experimental evaluation.
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6.1.1 Datasets
We selected evaluation datasets from both common communication programs and malicious samples

based on the following principles: (1) diverse protocol types; (2) message structures ranging from simple to
complex; (3) real-world applicability with broad representativeness.
Common Protocol Dataset ( Dcom)

We curated a common protocol setDcom containing 6 protocols, including common Ethernet protocols
Ethernet, FTP, TFTP, HTTP, and industrial control protocols Modbus, S7comm, as shown in Table 2.

Table 2: Details of datasetDcom

Protocol Project Total field Message types
Ethernet OpENer 37 Register Session; Unregister Session; Send RR Data; List

Identity.
FTP LightFTP 36 USER; PASS; PWD; LIST; RETR; STOR; DELE; MKD;

RMD; PASV; QUIT.
TFTP tftp-hpa 5 ACK; DATA.
HTTP miniweb 97 CURL PARAM; CURL PATH; CURL -H; CURL -L;

CURL -I.
S7comm snap7 28 Job: Setup communication; Job: Read Var; Job: Write Var;

Userdata: Request.
Modbus freemodbus 60 Read Coils; Read Discrete Inputs; Read Holding Registers;

Read Input Registers; Write Single Coil; Write Multiple
Coils; Write Multiple Registers Job: Setup communication;

Job: Read Var; Job: Write Var; Userdata: Request.

Malicious Protocol Dataset ( Dmal )
Existing research lacks protocol benchmarks for malware, so we manually created a sample set from

six popular malware families to evaluate ProRE in malicious protocol analysis, as shown in Table 3. Among
these, Gh0st uses a custom binary protocol, while Mirai implements lightweight IoT protocols. Cobalt Strike
and Sliver represent modern C2 frameworks with complex protocol designs.The samples range from simple
single-field protocols (Sliver) to complex multi-layered structures (Mythic) with multiple message types.
All selected families are actively deployed in real attacks, with publicly available samples and verifiable
protocol behaviors.

Table 3: Details of datasetDmal

Malware family Message types Lines of code
Gh0st 20 7301
Mirai 3 5113

Cobalt Strike 31 2934
Sliver 1 119

Revenant 5 1810
Mythic 3 892
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6.1.2 Baselines
We compare ProRE with following methods:

• binpre [4]: The state-of-the-art ExeT-based method. We supplemented its support for floating-point
extension instructions and ported it to the Windows platform for broader analysis applicability.

• tupni [7]: A classic work in state-of-the-art ExeT-based protocol reverse analysis methods, using an
open-source reimplementation [4].

• netlifter [18]: Aims to lift protocol implementation code to BNF protocol format. For fair comparison,
we used decompiled code fragments parsing protocols as input and wrote targeted stub code to drive
netlifter, also performing unified conversion of its original BNF output.

• QwQ-32B-preview [22]: We use the latest open-source large reasoning model (LRM) as a representative
of LLM-based inferencemethods. For fair comparison, we carefully designed prompts for field structure
recovery tasks, specifying the correspondence between fields and variables.

We did not consider more well-known ExeT-based methods [6] as their performance has been
surpassed by state-of-the-art work [4]. Due to fundamental differences in application scenarios and technical
principles, NetT-based methods [2,3] are also not within our comparison scope.

6.1.3 Metrics
We use the following metrics for evaluation.

Slice
For two code slices, let the relatedness score (Re) be the Spearman coefficient [23] calculated from

their embedding vector cosine similarity and manual judgment results. Let the categorization score (Ca)
be the clustering purity of slice embedding vectors in the labeled sample set; the coherence score (Co) be
the accuracy of nearest neighbor code slices calculated from embedding vectors on manually determined
similar samples.
Field Recovery

Weusemacro-F1 score and cophenetic correlation coefficient (c) to evaluate performance. For amessage
containing k fields, the precision, recall, and F1 score of the i-th field are:

prc(i) = TPi

TPi + FPi
, rec(i) = TPi

TPi + FNi
, f 1(i) = 2 ⋅ prc(i) ⋅ rec(i)

prc(i) + rec(i) (4)

where TPi is correctly classified bytes in field i, FPi is misclassified bytes not belonging to field i, and FNi is
missed bytes in field i. The macro-F1 score for all fields is:

F1 =
k
∑
i=1

σi f 1(i) (5)

with σi = 1.
We propose using the cophenetic correlation coefficient (c) to measure consistency between recovered

and actual format structures:

c =
∑i< j(di j − ȳ)(zi j − z̄)

√
∑i< j(di j − ȳ)2∑i< j(zi j − z̄)2

(6)
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where di j and zi j are distances in the compressed distance matrix (Y) and linkage matrix (Z), respectively,
ȳ and z̄ are their averages. c close to 1 indicates good consistency; close to −1 indicates poor consistency. We
use SciPy [24] to calculate Z, Y, and c.

6.2 Performance
Thefield structure recovery performance on the common protocol datasetDcom is described in Table 4.

The results show that ProRE achieves excellent performance on the common protocol set, with an average F1
of 0.89 and coefficient c of 0.229, significantly exceeding all baseline methods. Particularly on text protocols
with complex nested structures like FTP andHTTP, ProRE’s advantages aremore pronounced. For example,
on FTP protocol, ProRE achieves F1 of 0.90 and coefficient c of 0.115, while binpre only achieves 0.63 and
0.068.This ismainly due to our hierarchical clusteringmethod’s ability to effectively capture protocol nesting
relationships. tupni shows consistently lower performance (average F1 of 0.70), primarily due to its reliance
on taint analysis without semantic abstraction. Its performance particularly degrades on text protocols like
HTTP (F1 of 0.43) where field boundaries are less distinct. netlifter, despite its static analysis approach,
achieves moderate results on binary protocols (Modbus F1 of 0.91) but struggles with complex text protocols
due to missing dynamic execution paths. On binary protocols like Modbus and S7comm, performance
differences between methods are relatively small because these protocols have relatively simple structures
with clear field boundaries. However, even in these cases, ProRE maintains performance comparable to
the best methods. Notably, on OpENer, an Ethernet protocol developed for I/O devices, although binpre
matches ProRE in F1, ProRE still leads by 44% in coefficient c, demonstrating our method advantage in
identifying field structures.

Table 4: Performance comparison of ProRE on datasetDcom (best in bold)

Protocol ProRE binpre tupni netlifter QwQ-32B-preview

F1 c F1 c F1 c F1 c F1 c
Modbus 0.96 0.219 0.98 0.209 0.88 0.073 0.91 0.118 0.91 0.189
S7comm 0.88 0.304 0.88 0.258 0.91 0.090 0.90 0.214 0.89 0.170
Ethernet 0.86 0.270 0.86 0.188 0.57 0.066 0.55 0.010 0.51 0.028
FTP 0.90 0.115 0.63 0.068 0.55 0.024 0.52 0.107 0.53 −0.023
HTTP 0.73 0.092 0.42 0.026 0.43 0.009 0.38 −0.011 0.32 −0.102
TFTP 1.00 0.374 0.92 0.315 0.85 0.110 0.84 0.117 0.84 0.201

Average 0.89 0.229 0.78 0.177 0.70 0.062 0.68 0.092 0.67 0.077

The performance on the malware protocol dataset Dmal is summarized in Table 5. Overall, ProRE
achieves an average F1/c of 0.82/0.149, 5%–35%/0.103–0.145 higher than baseline tools. While ProRE cannot
perfectly recover all message fields, except for samples like Sliver containing a single long field, it performs
best. Due to significant differences in processing instructions between the beginning and ending bytes of
Sliver messages, ProRE’s byte-level slicing may produce errors. ProRE performs particularly well on Gh0st
and Cobalt Strike, with average F1 scores 9% higher than binpre, because these samples use numerous
API calls, making binpre’s semantic computation more error-prone. For Sliver with only one field, our
method’s over-segmentation of its internal structure results in lower coefficient c than binpre. However,
for samples with two or more structural layers (43% of the evaluation dataset), our method achieves higher
coefficient c, particularly for Mirai and Mythic with many nested fields. For Revenant, all methods show
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relatively lower F1 scores (0.41–0.62) due to its use of customobfuscation techniques that complicate semantic
analysis. Compared to ProRE, netlifter has lower average F1/c because it relies on static analysis and
misses dynamic call paths. Notably, despite powerful code understanding capabilities of QwQ-32B-preview,
its performance on complex tasks like protocol field structure recovery remains limited, with average F1/c
of 47%/0.004; its average precision exceeds recall, indicating a cautious strategy focused on reducing false
positives rather than inferring more fields.

Table 5: Performance comparison of ProRE on datasetDmal (best in bold)

ProRE binpre tupni netlifter QwQ-32B-preview

F1 c F1 c F1 c F1 c F1 c
Gh0st 0.80 0.124 0.72 0.117 0.67 0.065 0.61 0.008 0.42 −0.048
Mirai 0.99 0.208 0.96 0.020 0.80 0.042 0.68 0.045 0.42 0.028

Cobalt Strike 0.90 0.142 0.81 −0.018 0.74 −0.024 0.71 −0.023 0.51 0.026
Sliver 0.72 −0.017 0.70 0.005 0.68 −0.003 0.68 −0.011 0.54 −0.024

Revenant 0.62 0.083 0.60 0.004 0.54 −0.006 0.47 −0.012 0.41 −0.014
Mythic 0.89 0.352 0.82 0.021 0.63 0.203 0.54 0.128 0.51 0.053

Average 0.82 0.149 0.77 0.025 0.68 0.046 0.62 0.023 0.47 0.004

To evaluate generalization capability on unknown malware, Table 6 presents the performance compar-
ison between ProRE and baseline methods across 5 unknown samples. These samples were selected from
the public platform [25], with initial disclosure dates after June 2025. Sample types were identified using
the commercial detection platform [26], and we manually analyzed the communication protocol message
structures. Results demonstrate that ProRE maintains robust performance on unknown samples, achieving
an average F1 score of 0.78 and cophenetic correlation coefficient of 0.127, outperforming all baseline
methods by 6%–28% and 0.066–0.129, respectively. Even for complex protocols with nested encryption
layers such as BlackCat, ProRE successfully identifies field boundaries through semantic understanding
of data transformation operations. This indicates that ProRE generalizes effectively to unknown malware
protocols. However, tupni shows the steepest performance decline on unknown samples (average F1 of
0.66), indicating poor adaptability to novel protocol patterns. netlifter’s static analysis approach results in
highly variable performance, from moderate success on structured protocols like 8Base (F1 of 0.73) to near
failure on encrypted protocols like BlackCat (F1 of 0.52). The QwQ-32B-preview model exhibits the poorest
generalization (average F1 of 0.50), suggesting that its training on general code corpora provides insufficient
protocol-specific knowledge.

6.3 Ablation Study
We analyze the code slicing module, assembly language model, and clustering algorithm to evaluate

their impact on overall performance.
Code Slicing Module

For code slice extraction, we evaluate through field structure recovery F1 scores on input data under
different parameters. We set the current slice as S0 and dynamic execution path as L0. Define the following
two operations. (1) Path extension (+): Merge the original path L0 with its k-hop neighborhood basic blocks
to form a new slice set S+k . Here, k is the extension coefficient. (2) Path reduction (–): Remove basic blocks
from the original path L0 whose node indices are multiples of path length divided by k. Specifically, remove
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nodes vi satisfying i mod ∣L0 ∣
k ⌉ = 0. Here, k is the reduction coefficient. The (+) operation extends the slice

path; as k increases, the number of basic blocks increases. Its upper limit covers the entire control flow
graph (CFG) traversed by L0. Conversely, the (–) operation reduces the slice path; as k increases, the number
of basic blocks decreases. When k equals path length ∣L0∣, no basic blocks remain. As shown in Fig. 7,
after evaluating different extension/reduction coefficients k ∈ {−5,−4,−3,−2,−1, 0,+1,+2,+3,+4,+5} on
the benchmark dataset, we calculated the average F1 score of fields under each setting. Results show that the
current slice configuration yields the highest average F1 score for field structure recovery.

Table 6: Performance comparison on unknown malware samples (best in bold)

ProRE binpre tupni netlifter QwQ-32B-preview

F1 c F1 c F1 c F1 c F1 c
BlackCat 0.71 0.098 0.64 0.042 0.58 0.021 0.52 −0.008 0.41 −0.032
LockBit 0.82 0.152 0.75 0.068 0.71 0.055 0.66 0.031 0.53 0.018
Akira 0.85 0.171 0.79 0.094 0.72 0.048 0.68 0.022 0.55 0.009

BlackBasta 0.68 0.089 0.61 0.015 0.54 −0.012 0.48 −0.025 0.38 −0.041
8Base 0.84 0.124 0.82 0.087 0.76 0.064 0.73 0.052 0.61 0.035

Average 0.78 0.127 0.72 0.061 0.66 0.035 0.61 0.014 0.50 −0.002

Figure 7: k-hop data flow slices

Assembly Language Model
To comprehensively evaluate current slice performance, we generate embedding vectors for instruction,

basic block, and trace-level code, respectively. Results in Fig. 8 show that, ProRE assembly language model
maintains relatively stable embedding quality across different granularities. Among them, basic block-level
achieves higher average relatedness score of 0.88, indicating slice embeddings at this granularity are closer to
actual results; trace-level has higher coherence score, reflecting better generalization capability in semantic
expression for program execution records of certain length, but inferior to the other two granularities in
relatedness and categorization; instruction-level has higher categorization score, reflecting more accurate
and concentrated semantic expression.

To compare performance of different assembly language models, we selected palmtree [13],
asm2vec [12], safe [11], and raw instruction sequences as instances of abstraction extraction function δ.
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Specifically, palmtree abstracts semantics through data and control flow, asm2vec can handle code obfus-
cation problems, and safe performs well on programs including malware. For raw instruction sequences,
we use method from binpre [4] to calculate similarity. Samples are grouped by execution path length: A
(1–100), B (101–300), and C (301–700). Average F1 scores for each model are shown in Table 7 and Fig. 9.

Figure 8: Assembly language model evaluation on ProRE

Table 7: Evaluation on assembly language models (best in bold)

Group Sample quantity proportion Average F1

palmtree asm2vec safe Raw instruction ProRE
A 47.54% 0.88 0.89 0.89 0.69 0.91
B 29.51% 0.78 0.79 0.74 0.66 0.80
C 22.95% 0.66 0.62 0.60 0.36 0.69

Figure 9: Comparison with other assembly language models

Results show that when protocol processing paths are short (not exceeding 100), F1 scores for field
recovery are similar across different assembly language models. As path length increases, F1 scores gradually
decrease, but ProRE still maintains the highest average F1 of 0.83. When path length exceeds 300, ProRE
performsmore stably, with average F1 scores 13% higher than other models. Average F1 scores for palmtree,
safe, and asm2vec are 80.4%, 80.7%, and 78.6%, respectively. Their limitations are: (1) palmtree and safe
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cannot handle library functions, losing partial semantic information. (2) asm2vec is limited by context
window and cannot capture long-distance semantic relationships. Using raw instruction sequences lacks
sufficient semantic abstraction capability, having the worst field structure recovery ability compared to
assembly models, with F1 scores 19.3% lower on average.
Clustering Algorithm

To validate the effectiveness of hierarchical clustering in protocol field structure recovery, we compared
it with various classical clustering algorithms, including Needleman-Wunsch [27], K-means, DBSCAN, and
spectral clustering. We adapted these algorithms for protocol field recovery tasks by using byte-level slice
embeddings as input.

The results in Table 8 demonstrate that hierarchical clustering provides significant advantages in proto-
col field recovery. While Needleman-Wunsch achieves reasonable F1 scores through sequence alignment, it
cannot capture nested field relationships, resulting in significantly lower cophenetic correlation coefficients
(0.087 vs. 0.229 on Dcom). K-means requires a predefined number of clusters, and even when using the
actual field count, its structure recovery performance remains poor (c = 0.012 onDcom). DBSCAN struggles
with fields of varying density in the embedding space, while spectral clustering, though capable of capturing
some nonlinear relationships, cannot preserve the inherent hierarchical structure of protocol messages. In
contrast, hierarchical clustering achieves both accurate field boundary detection (higher F1) and structural
relationship preservation (higher c), with its core advantage being the natural representation of multi-level
field relationships through the clustering tree.

Table 8: Clustering algorithm comparison for field structure recovery (best in bold)

Algorithm Dcom Dmal Hierarchy recovery Time (ms)
F1 c F1 c

Hierarchical Clustering (Ours) 0.89 0.229 0.82 0.149 ✓ 124
Needleman-Wunsch 0.81 0.087 0.75 0.041 ✗ 892

K-means 0.73 0.012 0.68 −0.008 ✗ 67
DBSCAN 0.76 0.034 0.71 0.018 ✗ 103

Spectral Clustering 0.78 0.056 0.73 0.029 ✗ 215

Note: ✓: Supported; ✗: Not Supported.

6.4 Case Study
We select two representative samples to validate ProRE in real-world malware analysis.

6.4.1 Duke Steganographic Protocol
Duke [28] samples use LSB (Least Significant Bit) algorithm to extract steganographic data from bitmap

images. Fig. 10 shows key code fragments of the sample processing image data: (a) shows regular bitmap data
reading portion, (b) shows LSB steganographic data extraction portion. We generate code slice embeddings
for each bit of the image and perform visual analysis. As shown in Fig. 11, specific positions in each group
of three bytes, such as bits 7–8 of the first byte, bits 6–8 of the second byte, and bits 6–8 of the third byte,
show obvious semantic differences from other bits. These positions exactly correspond to steganographic
data bits extracted by the LSB algorithm (Fig. 12). Experimental results show that ProRE accurately identified
execution semantic differences whenmalicious code processes different data types through slice embedding,
recovering steganographic protocol structures.
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Figure 10: Duke malware code fragments

Figure 11: Duke code slice embedding visualization

Figure 12: LSB algorithm process



Comput Mater Contin. 2026;86(3):37 21

6.4.2 Mirai Credential Download Protocol
Mirai [17] is a botnet program that implements covert attacks by infecting and controlling large numbers

of IoT devices. A sample from this family (MD5: 3df80916a0d54cdf5eb3d476b4ae176d) has a credential
download protocol containing 40 bytes of data payload. Fig. 13 shows the hexadecimal representation of
the protocol message. We extract code slice embeddings corresponding to each byte (see Table 9) and apply
hierarchical clustering algorithm to generate the field cluster tree. Analysis results show that the message has
clear field boundaries at offsets 0–3, 4–5, 6–21, 22–37, and 38–39 bytes, completely matching the actual field
structure (Fig. 14). Notably, fields 6–21, 22–37 and bytes 4–5, 38–39 are relatively close in semantic distance,
corresponding to username and password data in credentials, respectively, demonstrating ProRE’s ability to
capture similarities in message processing logic.

Figure 13: Mirai credential download protocol message structure

Table 9: Mirai credential download protocol slice representation

Message byte offset Slice embedding Mnemonic
0 [10.1, 11.2, −2.4, . . ., 5.7, −1.3, −8.4] o0
1 [10.6, 10.5, −3.1, . . ., 5.7, −1.2, −7.2] o1
2 [10.5, 11.1, −2.9, . . ., 3.5, −0.9, −7.1] o2
⋮ ⋮ ⋮
39 [−1.5, 12.3, 8.9, . . ., −0.9, −1.8, 10.1] o39

Figure 14: Mirai protocol field tree

7 Discussion
In this section, we discuss the time consumption and generalization ability of ProRE, encrypted

message processing, and its limitations.
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Time Consumption
ProRE’s main computational overhead comes from: (1) dynamic execution trace collection, (2) code

slice embedding computation, and (3) hierarchical clustering process. In our experiments, processing a 40-
byte message takes an average of 3.2 s, with slice extraction accounting for 43.0%, embedding computation
35.6%, and clustering 21.4%. While this overhead is higher than simple static analysis methods, consid-
ering the significant improvement in analysis accuracy, this trade-off is acceptable. Additionally, ProRE
adopts an online instrumentation execution plus offline data flow simulation design, separating necessary
instrumentation code for tracking execution fromdata flow analysis code, reducing runtime analysis burden.
Generalization Capability

Our method has been validated on x86 architecture, but its core ideas can be extended to other
architectures.The assembly language model can be adapted by retraining on the target instruction set, while
slice extraction and hierarchical clustering algorithms are architecture-agnostic. Future work could explore
cross-architecture transfer learning to reduce training costs on new architectures.
Encrypted Message

Most malware adopts encrypted protocols for communication. Similar to previous work [8,29], ProRE
begins analysis from identified unencrypted message buffers to bypass the impact of encryption/decryption
functions on data flow analysis accuracy. ProRE captures the data propagation path of raw message buffers
from the network, and when standard cryptographic API calls exist in the path, it updates the analysis
starting point f0 to the pre-encryption or post-decryption address. We consider this approach feasible [30],
as ProRE’s inherent dynamic binary instrumentation framework supports this analysis.
Limitations

Despite ProRE achieving excellent performance, several limitations remain that we plan to address in
future work: First, for protocols containing only single long fields (like Sliver), byte-level slice extraction
may lead to over-segmentation. This can be mitigated by implementing adaptive granularity analysis
that dynamically adjusts the slicing unit based on preliminary field length estimation. We are exploring
multi-scale slicing approaches that combine byte, word, and block-level analysis. Second, when protocols
use complex encryption or obfuscation techniques, execution slices may not accurately reflect true field
boundaries. To address this, we plan to integrate symbolic execution techniques to reason about data
transformations and develop encryption-aware slicing algorithms that can identify and handle cryptographic
boundaries. Third, the current instrumentation engine [21] is limited by applicable architectures and
platforms. We are developing a platform-agnostic intermediate representation layer that can abstract away
architecture-specific details, enabling ProRE to support multiple binary analysis platforms [31–33] without
significant modifications.

8 Conclusion
This paper proposes ProRE, a protocol message structure reconstruction method based on execution

slice embedding. Addressing the shortcomings of existingmethods in field boundary division and hierarchi-
cal relationship recovery, we design three key techniques: (1) execution slice extraction based on data flow
dependencies to precisely capture protocol parsing processes; (2) a data flow-sensitive assembly language
model to achieve high-quality vector representation of program semantics; (3) hierarchical clustering algo-
rithm to completely recover protocol nested structures. Evaluation on a dataset containing 12 protocols shows
that ProRE achieves an average F1 score of 0.85 and cophenetic correlation coefficient of 0.189, improving
by 19% and 0.126 respectively over state-of-the-art baseline methods (including binpre, tupni, netlifter,
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and QwQ-32B-preview), demonstrating significant superiority in both accuracy and completeness of field
structure recovery. Case studies further validate ProRE’s effectiveness in practical malware analysis.

ProRE enables security analysts to rapidly understand unknown protocols in malware analysis, reduc-
ing analysis time from days to hours.The hierarchical structure recovery capability provides crucial insights
for vulnerability assessment, as nested field relationships often indicate potential parsing vulnerabilities.
Furthermore, the method’s success on encrypted protocols like Duke demonstrates its applicability to
modern malware that employs sophisticated evasion techniques. Organizations can integrate ProRE into
their threat intelligence pipelines to automatically extract protocol specifications from captured malware
samples, enhancing their defensive capabilities.

Several promising research directions emerge from this work. First, extending ProRE to handle
stateful protocol analysis would enable complete protocol state machine recovery. Second, developing cross-
architecture transfer learning techniques could reduce the training overheadwhen adapting to newprocessor
architectures. Third, integrating ProRE with fuzzing frameworks could enable structure-aware protocol
fuzzing for vulnerability discovery. Finally, investigating the use of large languagemodels to generate human-
readable protocol documentation from recovered structures could bridge the gap between automated
analysis and human understanding.
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