Com.puters, Materials & <Terch Science Press
Continua

Doi:10.32604/cmc.2025.071511

ARTICLE Check for

updates

A REST API Fuzz Testing Framework Based on GUI Interaction and
Specification Completion

Zonglin Li"", Xu Zhao”’, Yan Cao”", Yazhe Li’ and Yihong Zhang'

School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China

?Key Laboratory of Cyberspace Security, Ministry of Education, Information Engineering University, Zhengzhou, 450001, China
3School of Business and Commerce, Zhengzhou Business Technicians Institude, Zhengzhou, 450100, China

*Corresponding Author: Yan Cao. Email: ieycao@zzu.edu.cn

*These authors contributed equally to this work

Received: 06 August 2025; Accepted: 10 November 2025; Published: 12 January 2026

ABSTRACT: With the rapid development of Internet technology, REST APIs (Representational State Transfer
Application Programming Interfaces) have become the primary communication standard in modern microservice
architectures, raising increasing concerns about their security. Existing fuzz testing methods include random or
dictionary-based input generation, which often fail to ensure both syntactic and semantic correctness, and OpenAPI-
based approaches, which offer better accuracy but typically lack detailed descriptions of endpoints, parameters, or
data formats. To address these issues, this paper proposes the APIDocX fuzz testing framework. It introduces a
crawler tailored for dynamic web pages that automatically simulates user interactions to trigger APIs, capturing and
extracting parameter information from communication packets. A multi-endpoint parameter adaptation method based
on improved Jaccard similarity is then used to generalize these parameters to other potential API endpoints, filling in
gaps in OpenAPI specifications. Experimental results demonstrate that the extracted parameters can be generalized
with 79.61% accuracy. Fuzz testing using the enriched OpenAPI documents leads to improvements in test coverage, the
number of valid test cases generated, and fault detection capabilities. This approach offers an effective enhancement to
automated REST API security testing.

KEYWORDS: REST APIs; fuzz testing; OpenAPI specifications

1 Introduction

With the advancement of Internet technology, REST [1] has emerged as a de facto standard for Web
API communication. Numerous large-scale systems, such as Google' and Amazon”, leverage REST APIs for
microservice-based interface design. The REST API has become the fundamental bridge connecting front-
end users with back-end business logic in modern software ecosystems. Its quality and security directly
influence the reliability, maintainability, and business continuity of the entire system. At the same time, the
security of REST APIs has attracted increasing attention. Because REST APIs directly expose the business
logic and data access interfaces of a system, attackers may bypass traditional web-layer defense mechanisms
and interact directly with back-end services, thereby significantly expanding the potential attack surface.

1http\s:f [www.googleapis.com/discovery/vl/apis/drive/v2/rest (accessed on 08 November 2025)
2https:/’J'd<>cspn\\'s,;unn7/nn,(0m/’A—\m;\zonS}/lntcsr,’Al’I,"\\'clmmc,htm] (accessed on 08 November 2025)

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.071511
https://www.techscience.com/doi/10.32604/cmc.2025.071511
mailto:ieycao@zzu.edu.cn
https://www.googleapis.com/discovery/v1/apis/drive/v2/rest
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

2 Comput Mater Contin. 2026;86(3):95

Typical security risks include: (1) Authentication and access control flaws (e.g., token leakage, privilege
escalation), which may lead to the exposure of sensitive data; (2) Insufficient input validation (e.g., SQL
(Structured Query Language) injection, command injection, path traversal), which can trigger abnormal exe-
cution on the back end; (3) Business logic vulnerabilities (e.g., authentication bypass, replay attacks), which
may compromise the consistency of system states; and (4) Improper error handling, especially unhandled
exceptions that result in HTTP (Hypertext Transfer Protocol) 500 Internal Server Error responses, reflecting
weaknesses in exception management and boundary checking.

Given that REST APIs are often deployed within distributed architectures involving multiple collabo-
rative services, the failure of a single endpoint may lead to cascading faults and amplify security impacts.
Therefore, conducting systematic security testing and robustness evaluation for REST APIs is of critical
importance for both research and practical applications.

REST APIs are typically deployed across distributed containers and components, leading to complex
execution environments that present distinct challenges for white-box testing. In contrast, black-box testing,
independent of internal implementation details, is better suited to dynamic and distributed systems, signif-
icantly reducing testing complexity and cost [2]. Prior studies indicate that 72% of tools employ black-box
strategies to test REST APIs [3].

Therefore, various black-box security testing approaches for REST APIs have been developed in
research, including EvoMaster [4], Morest [5], foREST [6], Schemathesis [7], RestCT [8], RESTest [9],
NAUTILUS [10], and RESTler [11]. These approaches typically use the OpenAPI specification (or simply API
documentation) as input to identify potential security issues. The API documentation provides structured
interface information, including API endpoints, HT TP methods, and response formats, which is essential for
test case generation. It also plays a critical role in parameter assignment by specifying data type constraints,
default values, and boundary conditions.

Previous research has developed various approaches for test case generation from API documentation.
Arcuri et al. [4] proposed the MIO (Multiple Independent Objectives) algorithm to parse API specifications
and generate chromosome templates, where test cases are optimized through adaptive evolutionary sam-
pling. In related work, Alonso et al. [12] applied natural language processing to infer parameter semantics
from documentation, enabling automated retrieval of valid parameter values from knowledge bases. Ed-
douibi et al. [13] introduced customizable formatting strategies to ensure test cases comply with specific
schema constraints. Hatfield-Dodds et al. [7] took a model-driven approach by extracting OpenAPI meta-
models for automated test generation. Furthermore, Viglianisi et al. [14] advanced the field by constructing
operation dependency graphs to generate constraint-satisfying test cases, complemented by mutation
operators for anomaly detection.

Although API documentation provides a structured means of describing service interfaces, the Ope-
nAPI specifications published by service providers often exhibit varying degrees of incompleteness. This
issue is mainly manifested in the following three aspects: (1) Missing endpoints — Some backend interfaces
are not documented or are omitted due to permission or version management constraints, preventing testing
tools from comprehensively identifying all accessible endpoints on the server side. (2) Insufficient parameter
descriptions — The documentation often specifies only parameter names and data types, but lacks semantic
information such as value ranges, format constraints, or example values, thereby hindering the generation of
effective test cases. (3) Omission of inter-API dependencies—The invocation order or parameter inheritance
relationships between APIs are often not explicitly described, making it difficult for testing procedures to
reconstruct realistic interaction logic.

Comput Mater Contin. 2026;86(3):95 3

These deficiencies have a systematic impact on fuzz testing methods that rely on OpenAPI specifications.
Missing endpoint or parameter information can lead to insufficient test coverage, while the absence of
semantic constraints and example values causes the fuzzer to generate a large number of syntactically valid
but semantically invalid test cases, resulting in frequent 400 (Bad Request) or 404 (Not Found) responses.
Moreover, the lack of dependency information between APIs prevents the correct construction of cross-
endpoint invocation sequences, reducing the likelihood of triggering latent vulnerabilities. In addition,
OpenAPI documents may be created manually or automatically generated from code annotations. In cases
involving human intervention, issues such as typographical errors or inconsistent parameter naming may
occur, further degrading documentation quality. These problems directly affect the performance of testing
methods that depend on API specifications. Consequently, the incompleteness of API documentation has
become a critical bottleneck limiting the effectiveness and depth of automated API fuzz testing.

When API documentation is incomplete, manual intervention is typically required to supplement
missing specifications, thereby reducing its negative effects on the testing process. However, even with
complete parameter descriptions in API documentation, generating effective test cases critically depends on
appropriate parameter assignments—requiring both syntactic correctness and semantic validity.

To address API documentation incompleteness, we propose a REST API fuzz testing framework
combining GUI (Graphical User Interface) interaction and automated documentation completion. Our
solution develops a dynamic web crawler that performs deep interface interactions, where GUI operations
are simulated to trigger API requests. During API communication, the system captures network packets to
extract key parameters and values, then merges them with existing documentation. This process eftectively
compensates for missing information in API specifications.

To ensure both syntactic and semantic correctness in parameter values during test case generation,
we propose a multi-endpoint parameter adaptation method based on enhanced Jaccard similarity. Using
this refined metric, parameter values extracted from traffic analysis are generalized and propagated to
semantically compatible API endpoints, where they are incorporated into the API documentation as
validated examples. Crucially, real traffic data inherently satisfies syntactic and semantic requirements,
providing a reliable foundation for generating valid test cases.

The proposed method offers two key advantages over conventional approaches. First, parameters such
as date, timestamp, id, and authentication in API requests initiated by client-side applications are typically
auto-generated rather than manually assigned. Specifically, date and timestamp parameters are automatically
populated by frontend components based on system time; id fields represent backend-generated unique
resource identifiers; and authentication tokens derive from validated user credentials during login sessions.
During fuzz testing, random assignment of these parameters often triggers HT'TP 400 Bad Request errors
due to format validation failures. Second, while randomly generated or predefined parameter values may
satisfy syntactic requirements, their semantic invalidity frequently renders test cases non-executable. In
contrast, dynamically captured real user interaction data ensures parameter values comply with both
interface specifications and business logic constraints.

In summary, the key contributions of this work include:

o We designed a dynamic web crawler that integrates static analysis, dynamic analysis, and traffic
monitoring to overcome the limitations of traditional black-box testing in dynamic web environments,
enabling automated simulation of user interactions with Web APIs.

« Wepropose a multi-endpoint parameter adaptation method based on enhanced Jaccard similarity, which
is suitable for the application scenario of API endpoint testing. This method introduces 2-g segmentation
strategy to solve the problem of inconsistent parameter naming; The path enhancement strategy is

4 Comput Mater Contin. 2026;86(3):95

introduced to infer the inheritance relationship of business logic from the hierarchical structure of
API endpoints, which can effectively complete the parameter generalization task across endpoints, thus
providing support for the completion of API documents.

« We propose an API documentation completion strategy based on real traffic data that integrates
with API documentation-based test case generation tools. This approach effectively addresses key
limitations in traditional fuzzing, including syntactically incorrect parameters, semantically invalid
values, and business logic inconsistencies, significantly reducing invalid test cases while improving test
case effectiveness.

2 Problem Analysis
2.1 Crawling Challenges in Dynamic Web Applications

In modern web applications, JavaScript and client-side dynamic DOM (Document Object Model)
manipulation are widely used, often combined with AJAX (Asynchronous JavaScript and XML) to signif-
icantly enhance user experience. However, these technologies also increase the complexity of black-box
testing, making crawling AJAX-based web applications more challenging than traditional multi-page
web applications.

Traditional web applications employ explicit state management, where each application state cor-
responds to a unique URL and is fully rendered in server-side HTML (HyperText Markup Language)
documents. This architecture allows crawlers to collect data by recursively traversing hypertext links and
statically fetching page source code. In contrast, modern AJAX-based web applications utilize implicit
state maintenance mechanisms, characterized by runtime DOM tree manipulation for dynamic interface
updates. As a result, the initial HTML only contains a basic framework and cannot reflect state changes after
user interaction.

Therefore, crawlers targeting AJAX applications must possess the following capabilities: (1) loading and
executing front-end scripts, (2) monitoring and maintaining dynamic DOM tree states, and (3) simulating
user behaviors (including composite operations such as form filling and element clicking).

2.2 Limitations in Documentation-Driven Testing

API documentation formally defines API attributes using the OpenAPI specification format.
The paths field enumerates all API endpoints, with each endpoint supporting multiple HTTP request
methods (e.g., GET, POST, PUT). The parameters field under each method specifies required request
parameters. However, this structural definition fails to satisfy key requirements for valid test case generation.
Conventional parameter assignment techniques face two fundamental limitations: randomly generated
values frequently violate syntactic and semantic constraints, while predefined dictionaries cannot adapt to
diverse application contexts.

Consider a flight reservation system’s OpenAPI documentation (Table 1). The critical parameters
comprise destination airport, cabin class, and departure date.

Table 1: Excerpt from the API documentation of a flight reservation system

paths:
api/bookFlight:
post:
requestBody:

(Continued)

Comput Mater Contin. 2026;86(3):95 5

Table 1 (continued)

content:
application/json:
schema:
type: object
properties:
arrival_airport:
type: string
cabin_class:
type: string
enum: [Economy, Business, First]
departure_date:
type: string

As shown in Table 2a, the test case satisfies syntactic correctness but violates semantic validity. The
API specification defines input parameters as string while lacking semantic constraints. The invalidity
stems from two implicit requirements: (1) arrival_airport must be a valid IATA airport code’,
and (2) departure_date must comply with ISO 8601". The test value “fuzzstring” violates these
requirements, potentially triggering database errors or business logic failures.

Table 2: Test cases for flight reservation APIs

{ {

“arrival_airport™ “arrival_airport”™ “arrival_airport™

“fuzzstring’ “London”, “LHR”,
“cabin class™ “cabin_class™ “cabin_class™

“Economy’, “First Class’, “Business’,
“departure_date”™: “departure_date™ “departure_date™

“fuzzstring’, “15 June 20257 “2025-06-15T14:30:002%,
} } }
(@) () (c)

Conversely, Table 2b demonstrates semantic correctness with syntactic violations. Despite convey-
ing intended meanings, the values mismatch backend syntax expectations, typically yielding 400 Bad
Request responses.

Table 2c demonstrates a valid test case. API specification completion aims to identify implicit con-
straints absent from original documentation. Properly completed specifications provide parameter examples
satisfying both syntactic and semantic correctness, directly improving fuzz testing effectiveness and accuracy.

API documentation completion requires generalizing extracted parameters to other endpoints, but their
applicability scope remains ambiguous, manifesting as two issues: (1) Parameter naming inconsistency.

3 AnIATA airport code uniquely identifies airports worldwide
“The international standard for date/time representations

6 Comput Mater Contin. 2026;86(3):95

Identical parameters may use different names across endpoints, exemplified by arrival airport
vs. dest_airport_code. (2) Business logic inheritance. The hierarchical endpoint structure reflects
logical extensions, where /api logically extends to /api/bookFlight for flight booking, and further
to /api/bookFlight//allowbreak{f1lightId} for specific flight queries.

Exact string matching-based document analysis methods are inadequate here, as they only detect
character-level similarity without capturing cross-endpoint parameter functional equivalence. This necessi-
tates a similarity metric that can: (1) Establish cross-endpoint parameter mappings, (2) Infer business logic
inheritance from endpoint hierarchies. Parameters shared by endpoints with identical business logic should
be systematically generalized to enable their reuse in fuzz testing across related APIs.

3 APIDocX Fuzz Testing Framework

We present APIDocX (API Documentation Extension), a fuzz testing framework targeting REST APIs
that integrates GUI interaction and specification completion techniques. APIDocX operates through four
phases: (1) A crawler triggering Web APIs via simulated user interactions, combining dynamic and static page
analysis; (2) Structured extraction of valid parameters from captured API communication data; (3) Cross-
endpoint parameter generalization using enhanced Jaccard similarity to complete API documentation; (4)
Fuzz test execution with completed documentation to generate valid cases. The workflow is depicted in Fig. 1.

GUI Interaction for Structured Extraction Similarity-based API
Dynamic Web Pages of API Parameters Documentation Completion

Test Case
Generation

Quene n 1 Original Doc. I
: (a) Monitor “" traffic ' —» I calculate :
| E ey DOM tree - I__> tjson I
1 - .
1 . l 1
h ! . Param Name Sim, Path Sim. :
1 1 BNF ! : -]
! : 2-gram Path Splitting :
! Tag : (b) Extract | (g) Update | I !
. ['BUTTON', 'A"] . 1 l ;
| adrivute : P, .| Cross-endpoint Gen. Enbh. factor y !
1 ['onclick’] </ ' | 1
=| Role: [g"\ 1 - | @ -
I ['button’] G . I
Cursor : I I I
! ['pointer] i . Enhanced Jaccard !
1 (¢) Query (f) Interact I I 1
i l(d) Identify . 1 @ I
1 - .
| (¢) Enqueue . ! Complete API D !
, | | ‘omplete oc. L @

1 - >
! i . !
L e e e e e e e i = - I e e e e et ————— a

Figure 1: Workflow of the APIDocX fuzz testing framework

In stage (1), the dynamic web crawler identifies interactive elements and simulates user interactions.
During this process, it continuously monitors the DOM tree and records network traffic to ensure that all
potential interaction data are effectively captured from the initial state of the web page through its dynamic
updates. In stage (2), the system automatically analyzes the traffic information collected in the previous step
and applies BNF (Backus-Naur Form) rules to structure the data, extracting API parameter information and
forming a standardized parameter set. In stage (3), an enhanced Jaccard similarity algorithm is employed to
compute the similarity between the structured parameter information extracted in the previous stage and
the data defined in the original API documentation. This enables the analysis of parameter commonality

Comput Mater Contin. 2026;86(3):95 7

across different API endpoints and facilitates cross-endpoint parameter adaptation. In stage (4), parameters
whose similarity exceeds a predefined threshold are generalized to other API nodes, thereby refining and
completing the API documentation. The resulting documentation contains more comprehensive endpoint
information and syntactically and semantically valid parameter values.

4 Implementation of the APIDocX Fuzz Testing Framework
4.1 GUI Interaction for Dynamic Web Pages

GUI testing frameworks are categorized into three types [15]: coordinate-based, image-based, and
DOM-based approaches. Coordinate-based methods interact with fixed screen positions, making them
sensitive to environmental changes. Image-based techniques match UT (User Interface) elements through
screenshots, but requiring significant computational resources. Our proposed DOM-based method identifies
and controls elements through web attribute parsing, offering implementation simplicity, high efficiency, and
robust performance.

To enhance interactive element detection, we propose a novel strategy identifying clickable components
via CSS (Cascading Style Sheets) cursor property changes, combined with static-dynamic analysis for
DOM monitoring. Crawler-driven interaction simulation requires precise element identification. Traditional
methods include XPath-based DOM tree traversal, attribute-value pair filtering, or text content matching.
Building on Leithner et al’s event listener extraction method [16], we introduce a generalized approach:
detecting cursor style changes (e.g., default arrow to pointer) to indicate clickable elements. Our crawler
additionally mimics human browsing sequences to maintain business process integrity.

We presents a combined static-dynamic analysis method for DOM monitoring. The static analysis
component extracts interactive elements from the initial DOM structure before any user interaction or
JavaScript execution occurs. The dynamic analysis module detects runtime DOM mutations (including
node insertions, deletions, and attribute modifications) through callback-triggered processing. To optimize
performance during dynamic content handling, we implement a tagging mechanism that identifies processed
elements to avoid redundant operations. The main algorithm is illustrated in Algorithm 1, respectively.

The system captures initially available interactive elements (including buttons and hyperlinks) through
static DOM tree traversal. The function is_interactive () determines element interactivity based
on tag names, attributes (e.g., onclick, role), and CSS cursor styles, marking identified elements for
interaction simulation.

For dynamically loaded content, a MutationObserver monitors DOM structural changes. Node
additions or removals trigger the callback on_dom_change () to process new elements. To avoid
redundancy, each element receives a unique identifier combining its outerHTML structure and posi-
tional attributes for precise identification. Unprocessed elements have their center coordinates added to
the interactive_ elements list for user interaction simulation.

After identifying all interactive elements on the current page, the crawler sequentially simulates user
clicks to trigger additional data loading and API requests. These simulated interactions can trigger various
outcomes including page navigation, JavaScript execution, dynamic content rendering, pop-up windows,
or file uploads/downloads. When navigation to a new page occurs, the crawler enqueues the new page
for subsequent analysis. For cases involving JavaScript execution, dynamic content insertion, or pop-up
generation, the system performs real-time analysis of the newly appeared elements.

This module is implemented in Python and primarily utilizes the Selenium WebDriver framework
to perform page loading, DOM element parsing, and interaction control. Selenium provides fine-grained
control over browser behavior, enabling the simulation of realistic user interactions—such as clicking, typing,

8 Comput Mater Contin. 2026;86(3):95

and scrolling—without relying on the page source code, thereby effectively triggering potential API requests.
For dynamic content monitoring, the system integrates the MutationObserver API to achieve real-time
detection of DOM structure changes. When dynamic content is loaded, MutationObserver immediately
triggers callback functions upon node addition, deletion, or attribute modification, ensuring that the crawler
can promptly identify and process newly generated interactive elements.

During implementation, the system faces two main challenges. (1) Dynamic content loading and timing
issues: due to the asynchronous nature of AJAX loading mechanisms, certain elements may change frequently
within a short time, causing the crawler to initiate interactions before the DOM stabilizes, which can
lead to failed interactions or missed content. To address this issue, the module introduces explicit waiting
mechanisms and element interactivity detection strategies, ensuring that simulated operations are executed
only after the elements are fully loaded and interactable, thereby maintaining stability and completeness. (2)
Redundant recognition and infinite loop issues: in some complex web pages, dynamically loaded elements
are frequently replaced or re-rendered, causing the crawler to repeatedly recognize and interact with the
same elements, potentially leading to loops. To prevent redundant processing, the system assigns a unique
identifier to each element and performs comparison checks during subsequent scans to efficiently skip
already processed elements and avoid repeated interactions.

Algorithm 1: Main algorithm for simulating user interaction

1: Initialize visited elements and interactive elements
2: Create observer for on_dom_ change
3: Observe document .body with subtree options
4: Query all DOM elements into all_elements
5: for elementin all elements do

6 if is_interactive(element) then

7: process_element(element)

8: end if

9: end for

10: function IS_INTERACTIVE(element)

11: if element. tag in [BUTTON, A] then

12: return True

13: elseif element.has _attribute(‘onclick’) orelement.role == ‘button’
then

14: return True

15: elseifelement.computed_style.cursor == ‘pointer’

16: return True

17: else

18: return False

19: end if

20: end function

21: function PROCESS_ELEMENT (element)

22 Generate unique ID from HTML and position
23: if IDnotinvisited elements then

(Continued)

Comput Mater Contin. 2026;86(3):95 9

Algorithm 1 (continued)

24: Compute element center and record coordinates
25: Mark ID as visited
26: end if

27: end function
28: function ON_DOM_CHANGE (mutations)

29: for mutation inmutations do

30: if mutation.type == ‘ChildList’ then

3L Get new node, check interactivity, process if needed
32: end if

33: end for

34: end function

4.2 Structured Extraction of API Parameters

While the crawler module performs continuous operation, the system simultaneously captures API
communication packets to extract parameter names and corresponding values. Focuses on query parameters
in request URLs and key-value pairs in POST/PUT request bodies. We implement BNF to formally define
parameter extraction rules.

For GET requests, parameters typically appear in the query string section following this pattern:
GET /path/?paraml=valuel¶m2=value2 HTTP/1.1
The BNF extraction rules for GET requests are specified in Table 3.

Table 3: BNF-based extraction rule for GET request parameters

<HTTP_Request> 1= “GET” SP <URI> SP “HTTP/” <Version> CRLF
<Headers> CRLF
<URI> u=<Path> [“?” <Query_String>]
<Query_String> 1= <Param_Pair> (“&” <Param_ Pair>)*
<Param Pair> = <Param Name> “=” <Param Value>
<Param_Name> 2= (unreserved |pct-encoded | sub-delims)+
<Param_Value> :u=(unreserved|pct-encoded|sub-delims|“”|“@”)*
unreserved u= ALPHA | DIGIT|“7|“7|“”|“7”
sub-delims =P “& || T =
pct-encoded == “%” HEXDIG HEXDIG

For POST or PUT requests, parameters are typically formatted as key=value pairs in the request body,
as exemplified by:

POST /path/ HTTP/1.1
paraml=valuel¶m2=value2

We define the corresponding extraction rules in Table 4.

10 Comput Mater Contin. 2026;86(3):95

Table 4: BNF-based extraction rule for POST/PUT request parameters

<HTTP_Request> = (“POST”|“PUT”) SP <URI> SP “HTTP/” <Version> CRLF
<Headers> CRLF
<Body>
<Body> 1= <Param Pair> (“&” <Param_ Pair>)*
<Param Pair> = <Param Name> “=” <Param Value>
<Param_Name> z=(unreserved|pct-encoded | sub-delims)+
<Param Value> :u=(unreserved|pct-encoded|sub-delims|“”|“@”)*
unreserved 2= ALPHA | DIGIT | “-> | 7| “_” | “™
sub-delims T A I ol Al O 0 I i Il I Il
pct-encoded 1= “%” HEXDIG HEXDIG

Parameter extraction from HTTP response packets adopts analogous methodology. Using these parsing
rules, the system accurately identifies API parameters and their values from captured request/response
messages, enabling robust documentation completion.

In existing dynamic web crawling approaches, browser automation tools such as Selenium and Pup-
peteer are often combined with network monitoring tools like Burp Suite for web application security testing.
Although this combination can provide similar capabilities to some extent, it still exhibits several limitations.

First, Burp Suite can only capture HT TP requests after they have been issued and relies on configured
interception rules for request analysis; it does not provide dedicated functionality to automatically analyze or
extract parameters from requests, especially when those parameters are dynamically generated via JavaScript.
Consequently, Burp Suite’s ability in this scenario is limited. In addition, the integration of Selenium or
Puppeteer with Burp Suite introduces operational inconvenience, as users must manually configure the
testing environment and set interception points, a process that is relatively cumbersome. More importantly,
during fuzz testing, the substantial amount of manual intervention required by this workflow fails to meet
the demands of high-throughput automated testing and thus constrains testing efficiency.

The method proposed in this work achieves a high degree of automation by integrating the crawler with
an API request capture mechanism, enabling real-time capture and analysis of request parameters produced
during user interaction without the need for manually configured interception rules. This approach supple-
ments the automatic parameter analysis functionality that Burp Suite lacks and eliminates extensive manual
intervention, thereby substantially simplifying the testing process and improving overall testing efficiency.

4.3 Multi-Endpoint Parameter Adaptation Method Based on Enhanced Jaccard Similarity

We observe that traffic analysis-extracted parameters frequently demonstrate cross-endpoint reusabil-
ity, being applicable beyond their original endpoints. This requires establishing quantitative metrics to
evaluate parameter applicability and generalize them to suitable endpoints. Accordingly, we propose an
improved Jaccard similarity-based parameter adaptation method. Our method combines parameter name
similarity, path similarity, and a path enhancement factor to determine parameter generalization across
API endpoints.

Let P;,. denote the source parameter, E; be an endpoint in the API set, S;,;,; represent the overall
adaptation score, Syuram and Sy, indicate name and path similarities respectively, and « be a weighting

Comput Mater Contin. 2026;86(3):95 1

factor. The similarity score is computed as:
Stotal(PsrcaEi) = a’Spamm +(1_“)'Spath (0S a<l, i GN*) O

The normalization formula is defined as:

Stotal — Smi
Snormalized = H (2)

max Smin

4.3.1 Parameter Name Similarity

During the process of parameter generalization in API endpoints, parameter names may vary due to
different naming conventions, yet they essentially share similar semantics. To compute their similarity, each

or “_”) and converting all characters
to lowercase. Then, the 2-g method is applied to divide the string and generate a character sequence set G.

parameter name is first normalized by removing delimiters (such as

This method is capable of capturing minor naming inconsistencies (such as abbreviations or concatenations)
and yields a better matching performance.

Let G, and G, denote the source and target parameter sequence sets respectively. The similarity is
calculated as:
Gy N G|

Sparam = ot 3
param |GPUGE| ()

To further illustrate the computation of parameter similarity, consider the parameters Email
and email_addr, which share a high degree of semantic similarity. After preprocessing, the sequence set
of Emailis{em,ma,ai,il },and thatof email_addris{em,ma,ai,il,1a,ad,dd,dr }. The overlap
between their 2-gram subsequences results in a relatively high similarity score. If other similarity metrics
such as Levenshtein Distance are applied, the computed similarity would be lower (with an edit distance of
5), leading to a reduced similarity judgment for these two parameters.

4.3.2 Path Similarity

API endpoints typically consist of multiple hierarchical levels, and analyzing the hierarchical structure of
API paths is essential for inferring business logic dependencies. This paper divides endpoint paths according
to their hierarchical structure. Let Lp denote the sequence set of the path to be measured and Lg denote the
sequence set of the reference path. To enhance the weighting of the path similarity measure, a path depth
factor y is introduced. Here, N, ., represents the number of matching key segments between the two paths,
and Ny, represents the total number of path segments. The similarity is calculated as follows:

S) = |LpﬁLE| Xy
P4 min(|Lpl, |Lg|)
y = 1+ Nmatch

Ntotal

The denominator uses the minimum path length min(|Lp|,|Lg|) instead of the traditional Jaccard
denominator |Lp U Lg|, ensuring that shorter paths nested within longer ones can still maintain relatively
high similarity. This prevents the expansion bias caused by path length differences, making the metric more
consistent with the hierarchical design characteristics of API paths.

12 Comput Mater Contin. 2026;86(3):95

Compared with the traditional Jaccard similarity, the introduction of the path weighting factor enhances
the sensitivity to structural hierarchy. When only a small number of segments match between API endpoints,
if these segments occur near the beginning of the paths, the traditional approach may yield an undesirably
high similarity score, reducing computational accuracy. Therefore, this enhanced approach effectively
mitigates false positives in hierarchical path matching by considering both prefix position and path depth.

Opverall, this method achieves a better balance between sensitivity and robustness when measuring path
similarity in hierarchical API structures. It can accurately distinguish structurally dissimilar endpoints while
maintaining tolerance for local path variations, making it more suitable for hierarchical API path matching
scenarios. For example,

For example, consider the following two API endpoints:
/api/v3/customers/customerId/orders
/api/v3/customers/customerId/complaints

These two endpoints share the same prefix in their path hierarchy, but the final level resources orders
and complaints belong to completely different business domains. The former is used for order creation
and querying, while the latter is used for submitting customer complaints. There is no semantic or data
relationship between them, and thus they should not be regarded as generalized endpoints.

Using the traditional statistical method, the similarity is computed as:

|Lp n LE|2

=2.667
’Lp U LE‘

Spath =

With the improved calculation method, it becomes:

‘LP N LE|

—— — xy=1.333
min(|Lp|, [Le) 7

Spath =

As can be observed from the results, the traditional method tends to assign excessively high similarity
scores to endpoints with long shared prefixes, leading to misjudgments in cases where the subsequent path
structures differ significantly. In contrast, the improved approach introduces a path depth normalization
factor y to balance the influence of shared prefix depth, ensuring that the similarity score remains within a
reasonable and controllable range.

5 Experiments and Analysis

This paper integrates the APIDocX fuzzing framework with RESTler [11], and conducts experimental
validation from the following two aspects: effectiveness analysis of the framework and comparative analysis
with existing tools. The experiments select the open-source projects WordPress and crapi as test targets,
and construct a multi-dimensional evaluation system to comprehensively evaluate the method proposed in
this paper.

WordPress is currently one of the most widely used CMS (Content Management Systems) worldwide.
Its core includes a comprehensive REST API covering around 20 types of resources such as posts, pages, and
comments, with approximately 90 core endpoints. Each endpoint supports multiple parameterized access
and filtering methods. In real-world deployments, common plugins often register additional endpoints,
further extending the REST routes and significantly increasing the diversity and complexity of the interface
layer for testing.

Comput Mater Contin. 2026;86(3):95 13

In addition, WordPress exhibits rich dynamic interaction features, including AJAX calls, user role man-
agement, and permission control. These mechanisms introduce considerable dynamism and complexity in
request scheduling, state management, and authentication. Overall, the system’s large-scale API architecture
and dynamic interactive behavior make WordPress a highly representative example of modern, complex
web systems. It serves as a realistic and suitable platform for evaluating the scalability and effectiveness of
automated testing methods in real-world web service environments.

The experimental environment was built based on WordPress 6.5.3, with commonly used plugins such
as WooCommerce 8.9 and WPGraphQL 1.15 installed. The system runs on Ubuntu 22.04, with PHP 8.2 and
MariaDB 10.11 as the underlying environment.

crAPI is an open-source web service platform designed for security testing and vulnerability analysis,
characterized by its high complexity and realistic system structure. The system simulates a complete
modern web service, including modules for user registration, authentication, account management, product
ordering, and transaction processing. The backend consists of multiple independent service components
and exposes over 150 API endpoints, covering authentication, business logic, and step-by-step work-
flows. This design enables comprehensive evaluation of automated testing methods across diverse data
interaction patterns.

The crAPI environment was deployed using Docker Compose, running on Ubuntu 22.04, with Python
3.10, PostgreSQL 14, and Redis 7.2 as the core dependencies.

5.1 Effectiveness Analysis of the APIDocX Fuzzing Framework
5.1.1 Effectiveness Analysis of GUI Interaction

To verify the effectiveness of the proposed method in identifying interactive elements in the GUI, a
comparison is conducted with the existing method Cytestion [17]. Fig. 2 shows the trend in the number of
interactive elements identified by the two methods as the number of crawled pages increases. As the number
of crawled pages increases from 1 to 15, the total number of interactive elements identified by the proposed
method consistently exceeds that of the Cytestion method, and the gap between the two gradually widens.
When 15 pages are crawled, the proposed method identifies a total of 101 interactive elements, while Cytestion
identifies only 79. This indicates that under the same crawling depth, the proposed method can discover
more GUI interactive elements, demonstrating higher identification capability and coverage.

100 1 —@— Our Method
Cytestion

80

60

40 A

Interactive Elements

204

2 4 6 8 10 12 14
Pages

Figure 2: Trend of identified interactive elements across increasing crawl depth

14 Comput Mater Contin. 2026;86(3):95

Fig. 3 details the identification differences: 72.3% elements detected by both methods, 17.1% uniquely by
our approach, and 10.6% undetected. Demonstrating our method’s ability to uncover significant additional
elements missed by baselines, improving GUI coverage.

Unique
Missed

17.1%

10.6%

Shared

Figure 3: Distribution of coverage scope for identified interactive elements

The results demonstrate that our method not only covers all elements detected by Cytestion but also
identifies 171% of elements overlooked by Cytestion, primarily due to two limitations in Cytestion’s approach:
its dependence on manual annotation of custom attributes by testers (which cannot be applied to third-party
components) and potential human oversight during marking. In contrast, our proposed method analyzes the
fully rendered HTML page, automatically detecting both native and third-party components without manual
intervention, thereby significantly reducing tester workload. The remaining 10.6% undetected elements
are attributed to complex interaction patterns such as mouse hover-triggered elements, hidden menu
components, and state-dependent elements.

Experimental results confirm the superior effectiveness of our GUI testing method, which combines
CSS cursor property analysis with hybrid static-dynamic analysis to achieve broader element coverage and
more reliable interaction capabilities, establishing a robust foundation for subsequent system testing.

5.1.2 Effectiveness of API Documentation Completion

We propose an evaluation of the multi-endpoint parameter adaptation method based on enhanced
Jaccard similarity. We aim to measure adaptation accuracy and false generalization rates, while verifying the
similarity enhancement mechanism’s impact.

Quantitatively assessing adaptation requires defining:

o PA-Accuracy(Parameter Adaptation Accuracy): Correctly adapted parameter proportion

Comput Mater Contin. 2026;86(3):95 15

« FG-Rate(False Generalization Rate): Incorrectly generalized parameter proportion
o TP(True Positive): Correct endpoint matches

o FN(False Negative): Missed endpoint matches

o FP(False Positive): Incorrect endpoint matches

We define successful generalization as API requests with adapted parameters receiving 200 OK

responses. The metrics compute as:
TP FP
PA-Accuracy = —— FG-Rate = ———— (4)
TP + FN TP + FP

Fig. 4 shows the similarity results with 0.6 as the generalization threshold. High-similarity regions
form clustered dark blocks, particularly among endpoints sharing path prefixes or functional modules.
This demonstrates our method’s effectiveness in capturing parameter commonality and adapting to API
hierarchies, validating its multi-endpoint generalization capability.

lidentity/auth/signup[email]

Jidentity/auth/signup[password]

/identity/auth/check-otp[email] 1.0
fidentity/auth/check-otp[otp] ~
/identity/auth/check-otp[password] - 0.4
) 0.8
community/posts/{postld}[id] - 0
community/posts/{postid}[title] - 0
community/posts/{postid}[content] - 0 2z
~06 2
£
community/posts[content] - 0 @
community/posts(titie] - 0
-0.4
community/posts/{postld}/comment[postiD] - 0
community/posts/{postld}/comment[content] - 0 ~0.2
community/posts/{postid}/comment[quantity] - 0
shop/orders/{order_id}[order_id] - 0 -0.0

shop/orders/{order_id}{quantity] - 0

shop/orders/return_order[order_id] - 0
!
N N O N ST
Q\e@ & & 6@ & & & & & ¢S
& K S & o & o
T A S O G
\" & & & o X6 A\ < < N & & X7 L7 <
N 5 & \ £ & > \ N @
S & & & & ¢ & & ¢ ¢
I I
N \ =) N R S & N & S & & @ © &
& & & & > & K\ < &) & & & & e
R R = P S S T P
& N & s & & & & © S
& s & ¢
& 2 &

Figure 4: Heatmap of API endpoint similarity scores using the multi-endpoint parameter adaptation method based
on enhanced Jaccard similarity (threshold = 0.6)

These results indicate our method effectively identifies parameter commonality in logically inherited or
hierarchically structured API modules. The clustering demonstrates adaptation to API structural semantics
and confirms multi-endpoint generalization effectiveness.

16 Comput Mater Contin. 2026;86(3):95

To evaluate the improved Jaccard similarity’s optimization effect, we compare three strategies (Table 5):

Table 5: Experimental results of parameter generalization accuracy

Equation 1 Equation 2 Equation 3
PA-Accuracy 79.61% 72.72% 63.63%
FG-Rate 23.75% 19.11% 72%

» Equation 1: Our proposed similarity method
» Equation 2: Baseline similarity without hierarchical matching or path enhancement:

L, N L|

— (5)
[Lp UL

Spath =

« Equation 3: Modified Spath method based on Eq. (2) without 2-g

Results show the parameter adaptation accuracy increases from 63.63% to 72.72% between Eqs. (2)
and (3), originating from the 2-gram segmentation algorithm. The original method (Eq. (3)) employs
discrete token-matching with binary similarity values (0 or 1), causing polarized evaluation results. Our
improved method enables partial sequence alignment and continuous similarity measurement through
2-gram segmentation.

The enhanced algorithm achieves three key improvements: (1) Spelling variation tolerance: Character-
level 2-gram decomposition effectively detects variantslike “email” and “UserEmail” with overlapping
substrings. (2) Continuous assessment: Similarity scores transition from binary to continuous [0, 1] inter-
vals, avoiding extreme-value distributions. (3) False generalization reduction: The rate drops significantly
from 72% to 19.11%. Eq. (3) is compromised by overdependence on path similarity when parameter names
mismatch, generating inflated scores for structurally similar but semantically unrelated endpoints. This
single-feature dependency simultaneously increases both accuracy and false positives, while our algorithm
balances high accuracy with low generalization error.

Comparing Eqs. (1) and (2), accuracy further improves from 72.72% to 79.61%, demonstrating that
shortest path length and enhancement factor y enhance multi-endpoint generalization. By incorporating
endpoint path hierarchies, our method generalizes parameters more reasonably across sub-functions or
nested operations.

However, the false generalization rate increases from 19.11% to 23.75%. This phenomenon primar-
ily stems from naming collisions in endpoints with identical or highly similar paths. For instance,
the endpoint /identity/api/v2/user/videos/{video_id} and its parameters video_id
vs. videoName exhibit strong 2-g overlap despite representing distinct business semantics. The method
overweights lexical overlap in such cases, causing incorrect generalization.

In conclusion, our multi-endpoint parameter adaptation method based on enhanced Jaccard similarity
achieves superior accuracy by synergistically combining path structural features with partial name matching.
The introduced path enhancement factor y effectively captures API hierarchical relationships and nested
resource design patterns.

Comput Mater Contin. 2026;86(3):95 17

5.2 Comparative Experiments on the APIDocX Fuzzing Framework
5.2.1 Coverage Comparison Analysis

To validate the effectiveness of the proposed method in practical REST API testing scenarios, a coverage
comparison experiment was conducted on two open-source systems, WordPress and Crapi. Three commonly
used API fuzzing tools—RESTler, FoRest, and MoRest—were selected as baselines for comparison under a
unified testing environment. The coverage metric is defined as the percentage of REST API endpoints that
were successfully accessed during the test process relative to the total number of endpoints documented in
the API specification. The testing duration was set to 150 min to objectively reflect each tool’s comprehensive
capability in API exploration and invocation.

The experimental results are illustrated in Fig. 5. The coverage growth trends of the various methods
over time exhibit significant differences. The proposed method was slightly slower in the initial phase
(0-25 min) compared to other tools, but experienced rapid growth in the subsequent stages, reaching
86% endpoint coverage by the 55th minute and maintaining stability thereafter, outperforming the other
three methods. FoRest and RESTler approached saturation at around the 65th minute, achieving maximum
coverage rates of 81% and 77%, respectively. MoRest showed slow overall growth, with final coverage reaching
only 72%, significantly lower than the others.

80]
60
<
0]
o
o
5 40
>
o
(@)
20
—— Our Method
---- Restler
—-— FoRest
of b MoRest
0 20 40 60 80 100 120 140

Time (Minutes)
Figure 5: API endpoint coverage comparison curve

These results indicate that the proposed method incurs a slight delay in the initial stage due to the need
to trigger API invocations via GUI-driven interactions and to complete the corresponding documentation.
However, as parameter extraction and documentation completion progress, the system is able to rapidly
perform endpoint exploration and parameter combination, thereby enhancing endpoint coverage during
the testing process. In contrast to traditional methods that primarily rely on static path information in
API documentation to generate requests, the proposed approach dynamically discovers API usage paths
and actual parameter values through interactive behavior. This leads to stronger endpoint awareness and
adaptability, ultimately achieving higher coverage.

In summary, the coverage comparison experiment fully validates the advantages of the proposed
method in real-world testing environments. By leveraging the synergistic effect of GUI interaction and

18 Comput Mater Contin. 2026;86(3):95

documentation completion, the method significantly enhances the capability of discovering and invoking
API endpoints, thus providing a solid foundation for REST API security assessment.

5.2.2 Request Generation Comparison Analysis

To verify the effectiveness of the proposed method in generating test cases, a comparative experiment
was conducted on two open-source systems, WordPress and Crapi. The experiment compared the number
of valid and invalid requests generated by different testing tools, including RESTler, FoRest, and MoRest.
The evaluation metrics consist of the number of valid requests and the number of invalid requests. A valid
test case refers to a request that successfully triggers an API endpoint and receives a correct response. Invalid
test cases mainly refer to those for which the API endpoint returns an error status code, primarily including
400 Bad Request and 404 Not Found. A 400 Bad Request status indicates that the request contains a syntax
error or does not satisfy the server’s parameter validation rules. This typically occurs in cases where request
parameters are missing, incorrectly formatted, or contain values that exceed the expected range. A 404 Not
Found status implies that the assigned parameter values may not conform to the expectations of the server,
resulting in the request being incorrectly routed and failing to reach the corresponding resource.

The experimental results are shown in Fig. 6. Subfigures a and b respectively present the number
of valid requests generated by each testing tool in the Wordpress and Crapi environments. According
to the results, the method proposed in this paper generates the highest number of valid requests in
both testing environments—77,204 in Wordpress and 12,577 in Crapi—surpassing all other approaches.
This outcome indicates that extracting real parameters through GUI interaction, combined with a multi-
endpoint parameter adaptation strategy for API specification completion, can enhance the effectiveness
of test case generation and reduce the number of failed requests caused by parameter mismatches with
interface requirements.

Subfigures ¢ and d compare the number of two types of invalid requests: HT'TP 400 Bad Request
and 404 Not Found. The results show that RESTler produces the highest number of invalid requests in
both environments, with 404 errors generally outnumbering 400 errors. This suggests that RESTler exhibits
certain deficiencies in both path selection and parameter assignment. In contrast, the proposed method
results in the fewest invalid requests: only 4027 instances of 404 errors and 1079 instances of 400 errors
in the Wordpress environment, and 1021 instances of 404 errors and 1790 instances of 400 errors in the
Crapi environment, all lower than those produced by FoRest and MoRest. Most of these errors are caused
by incorrect parameter formats; Table 6 lists several examples of invalid test cases. During testing, it was
observed that many parameter constraints and value ranges were not explicitly documented in the API
specifications, yet were required in actual API requests. Through the GUI-based interactive parameter
extraction method, these critical parameters were successfully identified and extracted, thereby providing
reliable data support for subsequent fuzz testing.

Experimental results demonstrate that the proposed method exhibits a comprehensive advantage in
both API path selection and parameter assignment. The generation of a large number of valid requests
indicates its capability to explore the API functional space more thoroughly, while the relatively low number
of invalid requests reflects its syntactic and semantic accuracy in parameter handling. These results suggest
that the method possesses strong adaptability and scalability in complex API scenarios, effectively improving
the validity of generated test cases and reducing redundant invalid requests.

Comput Mater Contin. 2026;86(3):95 19

80000
12000
70000
1 60000 1 10000
i o
v [
& 2
g 50000 g 8000
2 2
€ 40000 S
- < 6000
o o
c c
230000 2
5 § 4000
= 20000 =
2000
10000
0 Our Method Restler FoRest MoRest 0 Our Method Restler FoRest MoRest
(a) Valid Requests — WordPress (b) Valid Requests — Crapi
404 Not Found 404 Not Found
400 Bad Request 400 Bad Request
8000 3000
0 @
2 4 2500
CU [
2 6000 =
& &
° S 2000
© ©
2 Z
5 4000 5 1500
@ @
a a
E £ 1000
=4 =4
2000
500
0 Our Method Restler FoRest MoRest 0 Our Method Restler FoRest MoRest
(c) Invalid Requests — WordPress (d) Invalid Requests — Crapi

Figure 6: Request count comparison for different testing tools

Table 6: Partial list of invalid test cases

api/v2/vehicle/add_vehicle

Response: “400 BadRequest”,

Description: “Field error in object ‘vehicleForm on field ‘pincode”
apil/merchant/contact_mechanic

Response: “400 BadRequest”,

Description: “A valid parameter is required.”

5.2.3 Fault Analysis

To evaluate the fault-triggering capability of the proposed method in practical security testing scenarios,
we recorded the number of faults successfully triggered by different tools in the Wordpress and Crapi testing
environments. In this study, a fault is defined as an event that causes an abnormal system response (500
Internal Server Error) or unexpected behavior that disrupts the business logic flow.

The statistical results are presented in Table 7. The proposed method demonstrates superior fault
detection capability in both testing environments. In the Wordpress environment, the proposed method
and MoRest each triggered four faults, outperforming RESTler and FoRest. In the Crapi environment, the
proposed method triggered a total of seven faults, exceeding all three baseline methods.

20 Comput Mater Contin. 2026;86(3):95

Table 7: Comparison of fault detection counts

Restler FoRest Morest Our
method
Wordpress I 2 4 4
Crapi 3 6 5 7

Representative faults are shown in Table 8. In Sequences 1 and 2, when a token is used or an One-Time
Password (OTP) is verified without prior login, the system fails to perform integrity checks on the token, and
abnormal inputs are not properly handled, directly resulting in a 500 Internal Server Error. Such behavior not
only disrupts the normal authentication process but also reveals the system’s lack of strict validation regarding
the sequence of business logic execution. In Sequence 3, when a user uploads a video file, if the request
format is invalid or the file field is missing, the server does not perform null checks or parameter validation,
leading to an unhandled exception. This indicates that the interface lacks robust input validation for complex
form submissions. In Sequence 4, during the submission of a repair request, the backend interface fails to
enforce authentication, allowing any user to access the repair endpoint. When invalid identity information
is provided, the server does not return a 403 Forbidden response but instead encounters an internal error,
exposing issues such as the absence of the principle of least privilege and insufficient resource validity checks.
In Sequence 5, when a user attempts to operate on a non-personal or already-returned order, the system does
not return the appropriate 403 or 400 error codes. Instead, it throws an internal error, indicating that the
backend does not strictly verify order ownership or status, thereby introducing risks of unauthorized access
and state inconsistency.

Table 8: Analysis of API call sequences and triggered errors

No. Endpoints of used request Response Description Required
parameters
1 1. POST api/auth/signup 200 OK Invalid credentials email, name
2. POST 500 Internal Server
api/auth/v2.7/user/login-with-token Error
. OTP details not .
2 1. POST api/auth/forget-password 200 OK found email, password

2. POST api/auth/v2/check-otp 500 Int;rrli Server
Current request is
not a multipart

request

500 Internal Server

3 1. POST api/v2/user/videos
Error

email, password,
4 1. POST api/auth/login 200 OK Server error pincode, vin,
mechanic_code

2. POST api/v2/vehicle/add_vehicle 200 OK
3. GET api/mechanic/receive_report 500 Internal Server
Error
5 1. POST api/auth/login 200 OK
2. GET api/shop/products 200 OK

500 Internal Server email, password,
3. POST api/shop/orders Server error product_id,

Error .
quantity
4. POST 500 Internal Server
api/shop/orders/return_order?order_id=33 Error

Comput Mater Contin. 2026;86(3):95 21

The observed errors do not stem from simple parameter boundary violations or type mismatches,
but rather originate from incomplete implementation of business logic constraints at the system level. For
well-designed APIs, request errors should typically return 4XX-series status codes to prompt client-side
request modifications. Consequently, when an API returns a 500 status code under exceptional sequences,
this indicates either concealed security vulnerabilities or robustness issues within the endpoint, reflecting
insufficient exception handling and recovery mechanisms for unexpected scenarios.

Notably, the successful execution of these API call sequences culminating in server-side 500 errors
critically depends on the comprehensive parameter information provided by the API documentation. During
test case generation, these parameters are properly embedded into corresponding requests, ensuring both
syntactic and semantic correctness. This approach effectively prevents system-level 400 Bad Request errors
caused by missing mandatory fields or parameter format violations. These findings demonstrate that effective
parameter value reuse constitutes a fundamental prerequisite for triggering such exceptional conditions.

6 Conclusion

This paper proposes a REST API fuzzing framework based on GUT interaction and API documentation
completion, aiming to address the challenges faced by existing API security testing methods when dealing
with incomplete OpenAPI specification documents. By designing a crawler capable of adapting to dynamic
web pages to simulate user interactions with web APIs and capture real interaction data, and using a multi-
endpoint parameter adaptation method based on improved Jaccard similarity for parameter generalization,
the framework can effectively compensate for missing parts in API documentation. This helps generate test
cases that are both syntactically and semantically valid, avoiding the drawback of producing large numbers
of invalid test cases through random value assignment or predefined dictionaries. For fuzz testing of REST
APIs, this approach is significant for generating effective test cases, providing preliminary input data for
the testing process to ensure coverage of key API functionalities and potential vulnerabilities. The proposed
method provides important data support for subsequent fuzz testing work.

Acknowledgement: I would like to express my heartfelt gratitude to the institutions and colleagues who provided
valuable support and guidance throughout the entire process of this research. Their insightful advice helped refine the
ideas and navigate key challenges, and their encouragement motivated perseverance through difficulties. From the early
stages of conceptual development to the final revisions, their thoughtful feedback greatly improved the quality and
clarity of this work. I am truly grateful for their time, patience, and dedication.

Funding Statement: This work was supported by the Open Foundation of Key Laboratory of Cyberspace Security,
Ministry of Education of China (KLCS20240211).

Author Contributions: Conceptualization, Zonglin Li and Xu Zhao; Software, Zonglin Li and Xu Zhao; Supervision,
Yihong Zhang; Validation, Zonglin Li and Xu Zhao; Visualization, Yazhe Li; Writing—Original Draft, Zonglin Li and
Xu Zhao; Writing—Review & Editing, Yan Cao. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Data available on request from the authors.
Ethics Approval: This study did not involve human or animal subjects.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

22

Comput Mater Contin. 2026;86(3):95

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Fielding RT. Architectural styles and the design of network-based software architectures [dissertation]. Irvine, CA,
USA: University of California; 2000.

Corradini D, Zampieri A, Pasqua M, Viglianisi E, Dallago M, Ceccato M. Automated black-box testing of nominal
and error scenarios in RESTful APIs. Softw Test Verif Reliab. 2022;32(5):e1808. d0i:10.1002/stvr.1808.
Golmohammadi A, Zhang M, Arcuri A. Testing RESTful APIs: a survey. ACM Trans Softw Eng Methodol.
2024;33:41. doi:10.1145/3617175.

Arcuri A. RESTful API automated test case generation with EvoMaster. ACM Trans Softw Eng Methodol.
2019;28:1-37. doi:10.1145/3293455.

LiuY, LiY, Deng G, Liu Y, Wan R, Wu R, et al. Morest: model-based RESTful API testing with execution feedback.
In: Proceedings of the 44th International Conference on Software Engineering (ICSE "22); 2022 May 21-29;
Pittsburgh, PA, USA. p. 1406-17.

Lin],Li T, Chen Y, Wei G, Lin], Zhang S, et al. foREST: a tree-based black-box fuzzing approach for RESTful APIs.
In: Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE); 2023
Oct 9-12; Florence, Italy. p. 695-705.

Hatfield-Dodds Z, Dygalo D. Deriving semantics-aware fuzzers from web API schemas. In: Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings (ICSE °22); 2022
May 21-29; Pittsburgh, PA, USA. p. 345-6.

Wu H, Xu L, Niu X, Nie C. Combinatorial testing of RESTful APIs. In: Proceedings of the 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE); 2022 May 21-29; Pittsburgh, PA, USA. p. 426-37.
Martin-Lopez A, Segura S, Ruiz-Cortés A. RESTest: automated black-box testing of RESTful web APIs. In:
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2021);
2021 Jul 11-17; Virtual. p. 682-5.

Deng G, Zhang Z,LiY, Liu Y, Zhang T, Liu Y, et al. NAUTILUS: automated RESTful API vulnerability detection. In:
Proceedings of the 32nd USENIX Security Symposium (SEC "23); 2023 Aug 9-11; Anaheim, CA, USA. p. 5593-609.
Atlidakis V, Godefroid P, Polishchuk M. RESTler: stateful REST API fuzzing. In: Proceedings of the 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE); 2019 May 25-31; Montreal, QC,
Canada. p. 748-58.

Alonso JC. Automated generation of realistic test inputs for web APIs. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2021); 2021 Aug 23-27; Athens, Greece. p. 1666-8.

Ed-douibi H, Izquierdo JLC, Cabot J. Automatic generation of test cases for REST APIs: a specification-based
approach. In: Proceedings of the IEEE 22nd International Enterprise Distributed Object Computing Conference;
2018 Oct 16-19; Stockholm, Sweden. p. 181-90.

Viglianisi E, Dallago M, Ceccato M. RESTTESTGEN: automated black-box testing of RESTful APIs. In: Proceed-
ings of the 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST); 2020
Feb 24-28; Porto, Portugal. p. 142-52.

Leotta M, Stocco A, Ricca F, Tonella P. P esto: automated migration of DOM-based Web tests towards the visual
approach. Softw Test Verif Reliab. 2018;28(4):e1665. doi:10.1002/stvr.1665.

Leithner M, Simos DE. XIEv: dynamic analysis for crawling and modeling of web applications. In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing (SAC "20); 2020 Mar 30-Apr 3; Brno, Czech Republic.
p. 2201-10.

d Moura TS, Alves EL, d Figueiredo HE d. S. Baptista C. Automated GUI testing for web applications. In:
Proceedings of the XXXVII Brazilian Symposium on Software Engineering; 2023 Sep 25-29; Brasilia, Brazil. p.
388-97.

https://doi.org/10.1002/stvr.1808
https://doi.org/10.1145/3617175
https://doi.org/10.1145/3293455
https://doi.org/10.1002/stvr.1665

	A REST API Fuzz Testing Framework Based on GUI Interaction and Specification Completion
	1 Introduction
	2 Problem Analysis
	3 APIDocX Fuzz Testing Framework
	4 Implementation of the APIDocX Fuzz Testing Framework
	5 Experiments and Analysis
	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

