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ABSTRACT: Knowledge distillation has become a standard technique for compressing large language models into
efficient student models, but existing methods often struggle to balance prediction accuracy with explanation quality.
Recent approaches such as Distilling Step-by-Step (DSbS) introduce explanation supervision, yet they apply it in a
uniform manner that may not fully exploit the different learning dynamics of prediction and explanation. In this
work, we propose a task-structured curriculum learning (TSCL) framework that structures training into three
sequential phases: (i) prediction-only, to establish stable feature representations; (ii) joint prediction–explanation,
to align task outputs with rationale generation; and (iii) explanation-only, to refine the quality of rationales. This
design provides a simple but effective modification to DSbS, requiring no architectural changes and adding negligible
training cost. We justify the phase scheduling with ablation studies and convergence analysis, showing that an initial
prediction-heavy stage followed by a balanced joint phase improves both stability and explanation alignment. Extensive
experiments on five datasets (e-SNLI, ANLI, CommonsenseQA, SVAMP, and MedNLI) demonstrate that TSCL
consistently outperforms strong baselines, achieving gains of +1.7–2.6 points in accuracy and 0.8–1.2 in ROUGE-L,
corresponding to relative error reductions of up to 21%. Beyond lexical metrics, human evaluation and ERASER-
style faithfulness diagnostics confirm that TSCL produces more faithful and informative explanations. Comparative
training curves further reveal faster convergence and lower variance across seeds. Efficiency analysis shows less than
3% overhead in wall-clock training time and no additional inference cost, making the approach practical for real-
world deployment. This study demonstrates that a simple task-structured curriculum can significantly improve the
effectiveness of knowledge distillation. By separating and sequencing objectives, TSCL achieves a better balance between
accuracy, stability, and explanation quality. The framework generalizes across domains, including medical NLI, and
offers a principled recipe for future applications in multimodal reasoning and reinforcement learning.

KEYWORDS: Knowledge distillation; curriculum learning; language models; multi-task learning; step-by-step
learning

1 Introduction
The exponential increase in computational power and the widespread availability of large-scale datasets

have led to unprecedented progress in artificial intelligence, particularly in natural language processing. The
rise of Large Language Models (LLMs), including GPT-4, PaLM, Claude, and LLaMA, represents a major leap
in AI research, as these models demonstrate remarkable abilities across diverse domains such as language
understanding, reasoning, creative text generation, and complex problem solving [1–3]. These models have
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achieved human-level or even superhuman performance on various benchmarks and have revealed emergent
capabilities that arise as a result of their large-scale pretraining and sophisticated learning paradigms.

Despite these advances, the practical deployment of LLMs remains highly constrained by significant
resource demands. Running inference on models with hundreds of billions of parameters requires substantial
GPU memory, high-throughput infrastructure, and energy consumption at a scale that is prohibitive for
most organizations [4,5]. For example, generating a single output from a 540 billion parameter model
such as PaLM can require hundreds of gigabytes of memory and considerable computational power. These
constraints raise serious concerns regarding accessibility, cost, and environmental impact, creating a gap
between state-of-the-art performance and real-world usability.

To mitigate these limitations, the research community has increasingly focused on efficiency-oriented
techniques. Among them, knowledge distillation has emerged as a powerful method for transferring the
capabilities of large, resource-intensive models into smaller, more deployable ones. Introduced by Hinton
et al. [6], knowledge distillation allows a compact student model to learn from a larger teacher model by
mimicking its behavior, thereby reducing the need for extensive retraining or large-scale supervision. While
early distillation techniques concentrated on replicating the teacher’s final outputs, recent methods have
shifted toward capturing intermediate representations and reasoning processes, which are often key to the
superior performance of LLMs.

This evolution has given rise to advanced frameworks such as Distilling Step by Step, proposed by
Hsieh et al. [7]. In contrast to traditional output-based distillation, this method incorporates natural
language rationales—textual reasoning steps generated by the teacher—as auxiliary supervision signals.
These rationales guide the student model to emulate not just the final predictions but also the cognitive steps
leading to them. Remarkably, models with as few as 770 million parameters have been shown to outperform
their 540 billion parameter teachers on multiple tasks, using only a fraction of the training data.

However, the original step by step framework approaches prediction and explanation as jointly
optimized tasks throughout training, without considering the pedagogical order in which these tasks
are introduced. Inspired by human learning processes and cognitive development theory, we posit that
structured sequencing of learning objectives can significantly enhance knowledge transfer. Educational
psychology shows that humans tend to first acquire foundational skills and then build upon them with
higher-order reasoning. In machine learning, this concept is formalized as curriculum learning, where
training examples are introduced in a progression that facilitates better learning dynamics [8].

Although curriculum learning has been explored extensively in the context of instance-level difficulty,
its application to task-level sequencing—especially in multi-task settings such as joint prediction and
explanation—is still underexplored. We argue that the relative ordering of learning objectives, rather than
the difficulty of individual samples, plays a crucial role in shaping the effectiveness of knowledge distillation.
Specifically, we hypothesize that building strong predictive representations before introducing explanation
generation leads to more coherent reasoning abilities and reduces task interference during training.

To this end, we introduce a novel task based curriculum learning framework that extends the step
by step distillation paradigm through strategic task sequencing. Our method divides training into three
consecutive stages: an initial phase focused solely on prediction, a second phase that jointly trains prediction
and explanation, and a final phase dedicated to refining explanation generation. This structured approach
aligns with cognitive load theory and minimizes optimization conflicts between tasks, ultimately enabling
more effective multi-objective learning.

We validate our framework through extensive experiments on four diverse NLP benchmarks—eSNLI,
ANLI, CommonsenseQA, and SVAMP—and across three T5 model sizes (small, base, and large). Our results
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show consistent improvements ranging from 1.8 to 2.4 percent over a strong baseline that uses the original
step by step strategy, without any increase in training data or computational requirements. Further ablation
studies confirm the robustness of our curriculum design and reveal its superiority over both static multi-task
learning and difficulty-based curricula.

Our key contributions are as follows:

• We propose the first task based curriculum learning framework for multi-task knowledge distillation,
emphasizing the order of task exposure rather than instance difficulty.

• We demonstrate consistent performance gains across multiple datasets and model sizes, with no
additional computational cost or data overhead.

• We provide detailed theoretical and empirical analysis that illustrates the impact of task sequencing on
optimization dynamics, interference reduction, and generalization.

Unlike Distilling Step-by-Step (DSbS), which jointly optimizes prediction and explanation tasks from
the outset, our framework reorganizes training into three pedagogically informed phases. This highlights the
role of task ordering—rather than instance difficulty—as the primary driver of efficient knowledge transfer.
Our ablation studies empirically confirm that sequential task exposure reduces gradient interference,
respects task dependencies, and outperforms difficulty-driven curricula.

In summary, our study highlights the importance of learning structure in multi-task distillation and
offers a simple yet powerful modification to existing frameworks. The proposed approach contributes toward
making high-performance language models more accessible and efficient, supporting broader deployment
of advanced AI systems.

2 Related Work
The evolution of knowledge distillation and curriculum learning in the context of large language

models reflects the convergence of several research trajectories developed over the past decade. To present a
structured overview, we organize this section into five subsections.

2.1 Knowledge Distillation
The foundational concept of knowledge distillation was introduced by Hinton et al. [6], who proposed

transferring knowledge from large ensemble models to smaller individual networks via soft target distribu-
tions. This seminal contribution established the core framework of teacher-student learning that has since
become central to model compression research. Early applications focused primarily on image classification,
where distillation enabled substantial model size reductions without compromising performance.

The adoption of knowledge distillation in natural language processing gained momentum with the
advent of transformer-based architectures and pre-trained language models. DistilBERT [9] achieved a 40%
reduction in model size while retaining 97% of BERT’s language understanding capabilities. Building on this
success, TinyBERT [10] introduced transformer-specific distillation strategies, yielding further compression
and faster inference.

2.2 Curriculum Learning
The curriculum learning paradigm was initially formalized by Bengio et al. [8], positing that presenting

training examples in an easy-to-hard order improves optimization and generalization. Early approaches
relied on static difficulty measures, while later methods incorporated adaptivity. Competence-based cur-
riculum learning [11] dynamically adjusted difficulty and reduced training time by up to 70%. Xu et al. [12]
extended these ideas to fine-tuning language models. More recent advances such as TAPIR [13], adaptive
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prompting [14], and attention-guided ordering [15] demonstrate the importance of dynamically tailoring
curricula to model feedback and task characteristics.

2.3 Multi-Task Distillation and Reasoning Transfer
Simultaneously, multi-task learning emerged as a complementary paradigm. T5 [16] established a

unified text-to-text framework, while Liu et al. [17] demonstrated multi-teacher strategies that improved
generalization across tasks.

The field has since shifted toward reasoning-centered transfer. Instruction tuning, such as FLAN-T5 [18],
scaled to thousands of tasks, and symbolic chain-of-thought distillation [19] enabled small models to acquire
reasoning capabilities. Mukherjee et al. [20] showed that Orca, distilled from GPT-4 explanation traces, could
surpass Vicuna-13B in reasoning benchmarks. The distilling step-by-step framework (DSbS) [7] introduced
rationale supervision, enabling compact models to outperform larger ones with limited data.

2.4 Curriculum Learning in Distillation
Recent works explore combining curriculum learning with distillation. Li et al. [21] proposed Cur-

riculum Temperature, integrating easy-to-hard curricula with dynamic temperature scheduling, achieving
efficiency gains with minimal overhead. Maharana and Bansal [22] highlighted task-dependence, showing
that commonsense reasoning benefits from prioritizing harder samples later. Longpre et al. [23] examined
task interference in instruction tuning, and Naïr et al. [24] demonstrated that curriculum effects vary across
code generation subtasks. These findings underscore that curriculum-aware distillation requires careful
alignment with both tasks and teacher signals.

2.5 Gap in Current Research
Despite substantial progress, the unified integration of curriculum learning, knowledge distillation,

and multi-task optimization remains underexplored. Existing approaches often combine elements in pair-
wise fashion but lack systematic frameworks coordinating these strategies for maximum effectiveness. In
particular, task sequencing within distillation—deciding when to introduce prediction versus explanation
learning—has received limited attention.

Existing studies on curriculum learning have predominantly focused on instance-level difficulty. In
contrast, our method is the first to operationalize task-level sequencing in the context of multi-task
distillation. We show that this structural reorganization provides consistent gains over both DSbS and
difficulty-based curricula, underscoring the importance of task dependency rather than example difficulty.

Recent advances in curriculum learning further motivate our task-structured curriculum framework
by integrating richer notions of difficulty, competence, and dynamic sampling. For instance, Vakil and
Amiri [25] propose a multiview competence-based curriculum for graph neural networks that jointly models
graph complexity and learner proficiency to adaptively schedule training. Similarly, Koh et al. [26] combine
curriculum and imitation learning for financial time-series control, demonstrating improved generalization
under stochastic dynamics. More recently, Feng et al. [27] present a dual dynamic sampling method coupling
curriculum sequencing with reward-variance-aware sampling to enhance convergence stability. Finally,
Wu et al. [28] apply curriculum principles to multi-agent large-language-model tasks (CurriculumPT),
structuring complex security scenarios into graded subtasks. Collectively, these works illustrate a growing
trend toward adaptive and variance-aware curriculum strategies that transcend static ordering. Our approach
contributes to this direction by explicitly structuring task sequences while ensuring stable cross-task transfer
and generalization.
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3 Methodology
In this section, we present the proposed task based curriculum learning framework for enhancing multi

objective knowledge distillation. Our approach builds upon the distilling step by step paradigm, which trains
student models to replicate not only the predictions but also the reasoning chains of large teacher models.
While previous methods treat prediction and explanation as jointly optimized objectives, we hypothesize
that the temporal ordering of these tasks during training significantly affects knowledge transfer efficiency,
convergence stability, and final performance.

The key insight of our method is that sequential exposure to prediction and explanation—rather
than simultaneous optimization—can reduce task interference and improve alignment between task rep-
resentations. To operationalize this idea, we design a three phase curriculum that begins with prediction
only training, progresses to joint prediction and explanation learning, and concludes with explanation
focused refinement.

We support this hypothesis with theoretical motivations rooted in cognitive load theory, task
dependency dynamics, and optimization theory. Furthermore, we provide a detailed description of the
implementation strategy, covering model architecture, loss switching, curriculum scheduling, and evaluation
settings. Finally, we compare our framework against existing distillation and curriculum baselines to
highlight its novelty and practical simplicity.

Fig. 1 summarizes the proposed task-structured curriculum. Panel (a) shows the teacher-student setup
with prediction and explanation signals, aligned with Lpred, Lexp, and Ljoint. Panel (b) illustrates the
three phases and the loss-switching mechanism (Eq. (4)). This visualization helps clarify how the training
objectives evolve across phases.

Figure 1: Framework overview. (a) Teacher-student knowledge distillation with prediction (Lpred, Eq. (1)) and expla-
nation (Lexp, Eq. (2)) signals that feed a joint objective (Ljoint, Eq. (3)). (b) Three-phase curriculum and loss switching
(Eq. (4)): Phase I (prediction-only), Phase II (joint), and Phase III (explanation-only). The 40–30–30 split illustrates
how training is scheduled across phases, with parameters shared throughout
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The rest of this section is organized into the following parts: Section 3.1 defines the problem for-
mally. Section 3.2 describes the structure of our curriculum strategy. Section 3.3 presents theoretical
justifications. Section 3.4 outlines implementation details, and Section 5 compares our framework with
existing approaches.

3.1 Problem Definition
We address the problem of multi-objective knowledge distillation, where the goal is to train a compact

student language model to emulate both the prediction accuracy and the explanation behavior of a large
teacher model.

Let D = {(xi , yi , ri)}N
i=1 denote a dataset of N examples, where xi is an input instance (e.g., question,

sentence pair), yi is the ground-truth label, and ri is a natural language rationale produced by a teacher
model. The student model is parameterized by θ and comprises two outputs: (1) a prediction function fθ(xi)
that estimates yi , and (2) an explanation function gθ(xi) that generates a rationale.

Traditional distillation jointly minimizes prediction and explanation losses:

Ltotal = λLpred( fθ(xi), yi) + (1 − λ)Lexpl(gθ(xi), ri), (1)

where λ ∈ [0, 1] controls the relative emphasis on each objective. Both Lpred and Lexpl are token-level cross-
entropy losses. While effective, this simultaneous optimization can cause unstable gradients and interference
between prediction and explanation signals, especially at early stages of training.

Our objective is to introduce a principled, phase-structured learning schedule that gradually incorpo-
rates these objectives based on their cognitive and optimization dependencies.

3.2 Curriculum Strategy Design
We propose a task-structured curriculum learning strategy that reorganizes the training dynamics

of multi-objective knowledge distillation. Rather than optimizing prediction and explanation objectives
concurrently, we introduce a temporal decomposition aligned with human pedagogical scaffolding: the
model first learns to predict, then learns to justify, and finally refines its reasoning in isolation. This
decomposition mirrors the natural learning process—mastering procedural competence before reflective
reasoning—and mitigates task interference.

To maintain consistent notation across all phases, we define a single weighting factor λ as the global
trade-off parameter between prediction and explanation objectives. All subsequent loss formulations reuse
this factor, ensuring coherence across Eqs. (1)–(4).

3.2.1 Phase I: Prediction-Focused Pretraining
The first phase focuses exclusively on prediction learning, establishing a strong foundation for decision-

making:

Lphase1 = Lpred( fθ(xi), yi). (2)

During this phase, gpred(p(t)) = 1 and gexp(p(t)) = 0, meaning only the prediction pathway is active.
The model optimizes standard cross-entropy (CE) over the mini-batch:

Lpred =
1
B

B
∑
i=1
( −∑

c∈C
1[yi=c] log pθ(c ∣ xi)),
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which, for text-to-text models (e.g., T5), is equivalent to token-level negative log-likelihood (NLL) over the
label sequence. This stage stabilizes early optimization and yields decision boundaries that subsequent phases
will align with explanation representations.

3.2.2 Phase II: Joint Prediction and Explanation Learning
Once predictive competence is achieved, both objectives are activated concurrently to promote

representational alignment:

Lphase2 = λLpred( fθ(xi), yi) + (1 − λ)Lexpl(gθ(xi), ri). (3)

This phase corresponds to (gpred, gexp) = (1, 1), where both objectives are active. The combined objective
encourages the model to jointly refine decision accuracy and rationale faithfulness. The single trade-off factor
λ prevents notation redundancy and is fixed unless otherwise stated. Per-sample availability masks mpred(xi)
and mexp(xi) are applied to handle partial annotations, ensuring both signals update shared parameters θ
without interruption between phases.

3.2.3 Phase III: Explanation Refinement
In the final phase, the prediction component is deactivated (gpred(p(t)) = 0), and the model focuses

solely on explanation refinement:

Lphase3 = Lexpl(gθ(xi), ri). (4)

The explanation loss is computed as length-normalized sequence NLL:

Lexpl =
1
B

B
∑
i=1

1
Ti

Ti

∑
t=1
( − log pθ(ei ,t ∣ ei ,<t , xi)),

with presence indicators mexp(xi)∈{0, 1} nullifying missing rationales. Inactive losses contribute zero
gradients, ensuring smooth phase transitions. Formally, the phase-weighted total objective can be expressed
as:

Ltotal(θ) =
Ttrain

∑
t=1
[gpred(p(t))L(t)

pred + gexp(p(t)) λL(t)
expl],

where (gpred, gexp) follow the schedule: (1, 0) for Phase I, (1, 1) for Phase II, and (0, 1) for Phase III. This
unified formulation eliminates redundant notation while maintaining interpretability of phase transitions.

The final phase allows explanation fluency and faithfulness to be refined without gradient interference
from the prediction task. It consolidates cognitive representations and improves reasoning quality, as
reflected in the reduced oscillation index and smoother convergence behavior (Section 5.6).

3.3 Theoretical Justification
The proposed task based curriculum strategy draws theoretical support from multiple lines of research

in learning sciences, optimization theory, and multi-task learning. In this section, we present the foun-
dational principles that motivate the design of our three-phase curriculum. Each principle underscores a
distinct aspect of how task sequencing can improve the efficiency and effectiveness of knowledge distillation.
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3.3.1 Cognitive Load Minimization
Our design is inspired by Cognitive Load Theory (CLT) [29], which posits that effective learning occurs

when instructional design minimizes extraneous cognitive burden and sequences complexity gradually. In
the context of multi-objective distillation, training on prediction and explanation tasks simultaneously from
scratch imposes a high initial cognitive burden on the model, particularly when the rationale sequences
are long or abstract. By beginning with the simpler prediction task, we reduce early-stage representational
demands and allow the model to allocate its capacity toward mastering a core decision function before
learning to articulate it.

3.3.2 Task Dependency and Sequential Transfer
The rationale generation task depends intrinsically on the prediction task, both semantically and

computationally. This aligns with theories of task hierarchy and sequential transfer, which argue that
downstream tasks benefit from the prior mastery of foundational ones [8]. Explanation learning can thus
be viewed as a secondary cognitive function that builds on established semantic representations. Our
curriculum structure respects this hierarchy, allowing the student model to first learn decision boundaries
before being expected to verbalize justifications—mirroring effective scaffolding in human instruction.

3.3.3 Optimization Landscape Simplification
From an optimization perspective, the joint training of heterogeneous tasks can lead to unstable

gradients and competing objectives, especially when task-specific losses operate on different timescales or
exhibit varying curvature. Prior work in multi-task learning has shown that simultaneous training can create
noisy or conflicting gradients [30]. Our curriculum mitigates this by isolating tasks in the early and late
training phases, reducing interference and enabling smoother convergence. The staged introduction of losses
effectively decomposes the optimization problem into locally convex sub-problems, which are easier to solve
sequentially than jointly from random initialization.

3.3.4 Gradient Interference and Representation Alignment
Recent studies have highlighted the problem of gradient interference in multi-task settings, where

gradients from different tasks point in opposing directions, leading to suboptimal updates [31,32]. By
structuring training such that prediction gradients dominate early and explanation gradients dominate later,
our curriculum temporally separates these influences, reducing destructive interference. Furthermore, the
intermediate joint training phase serves as an alignment mechanism, where shared parameters are adjusted
to simultaneously support both tasks. This aligns with findings in progressive neural training that suggest
late-stage specialization benefits from early-stage task generalization.

3.3.5 Curriculum Learning Efficacy in Multi-Objective Settings
Curriculum learning literature provides additional support for phased task introduction. While tradi-

tional curricula focus on instance difficulty [8], recent work emphasizes task-level ordering, especially in
multi-task and multi-modal contexts. These studies demonstrate that proper sequencing of tasks—not just
examples—can improve knowledge transfer, reduce overfitting, and accelerate convergence. Our approach
applies this principle by structuring the learning objectives themselves, rather than merely adjusting the
data ordering.
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3.3.6 Faithfulness and Explanation Calibration
The final explanation-focused phase also serves a conceptual function: it encourages the model to refine

and calibrate its rationales in the absence of prediction supervision. This decoupling ensures that generated
rationales are not merely regurgitated from prediction signals but are independently optimized for fluency,
factuality, and alignment with learned decision boundaries. This aligns with the literature on explanation
faithfulness and interpretability, which emphasizes the need for decoupled explanation supervision to
improve the transparency and robustness of model behavior [33].

3.4 Implementation Details
To ensure rigorous and fair comparison with prior work, we implement our task-based curriculum

learning framework within the same architecture, optimization regime, and training infrastructure as the
baseline distilling step-by-step method. This section details the curriculum scheduling, model design, loss
function switching, and training protocol used in our experiments.

3.4.1 Model Architecture and Initialization
We adopt the encoder-decoder T5 architecture [16] as our base model across three different scales:

T5-small (60M), T5-base (220M), and T5-large (770M). All models are initialized from publicly avail-
able checkpoints released by HuggingFace Transformers [34]. The experiments were implemented using
the transformers = 4.41.2 library from HuggingFace with PyTorch = 2.3.0. All models were
trained and evaluated on an NVIDIA A100 GPU. We ensured consistent reproducibility by fixing random
seeds across all components. The student model is trained from scratch without any pre-distilled weights to
isolate the effect of the curriculum structure.

To maintain parity with the baseline, the model is trained using teacher-generated rationales extracted
from FLAN-T5-xl (3B) or FLAN-T5-xxl (11B), depending on the experiment. All input instances are
prepended with explicit task prefixes such as [PREDICTION] or [EXPLANATION] to signal the
training objective.

3.4.2 Curriculum Schedule and Phase Allocation
Our curriculum is divided into three consecutive phases across a fixed training budget of 10,000 steps:

• Phase 1 (Step 1–4000): Prediction-Only Training. The model is trained solely on the primary predic-
tion objective, minimizing the cross-entropy loss between predicted outputs and target labels. Rationale
outputs are masked out, and no explanation loss is computed.

• Phase 2 (Step 4001–7000): Joint Multi-Task Training. The model is jointly trained on both prediction
and rationale generation. We apply a weighted sum of prediction and explanation losses using a fixed
balancing coefficient α = 0.5, as in the original distilling step-by-step framework.

• Phase 3 (Step 7001–10,000): Explanation-Only Refinement. The model exclusively focuses on ratio-
nale generation, and prediction loss is not computed. This phase allows fine-grained alignment of
explanation quality with previously learned decision patterns.

We hypothesize that allocating a longer initial prediction phase allows the student to build robust feature
representations before being exposed to the more complex explanation objective. Once this foundation is
established, a balanced joint phase provides enough time for alignment between prediction and explanation
signals without causing mutual interference. The final explanation-only phase then benefits from both
stability and alignment, leading to improved rationale quality.
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Rationale for the 40–30–30 schedule. Beyond empirical validation, this split follows a simple heuristic:
begin with an extended prediction-focused stage (40%) to ensure the student acquires stable feature
representations; then use a shorter joint stage (30%) to align prediction and explanation without excessive
conflict; and finally allocate the remaining 30% to explanation-only training, allowing rationales to be refined
once the backbone representations are well established. This mirrors the curriculum principle of starting
with simpler tasks and gradually adding complexity.

3.4.3 Loss Function Switching Mechanism
Loss switching is implemented directly in the training loop by conditioning on the current step count.

During each phase, only the relevant task-specific loss is backpropagated, while outputs for the non-target
task are computed for logging but excluded from gradient updates. This design ensures seamless transitions
between phases and preserves consistent model state.

3.4.4 Task Prefix Encoding and Input Formatting
All training instances are formatted in a unified text-to-text style using T5’s prefix-based prompt

framework. Specifically:

• [PREDICTION] <input> → <label> is used in Phase 1 and Phase 2.
• [EXPLANATION] <input> → <rationale> is used in Phase 2 and Phase 3.

During joint training, both prompts are sampled with equal probability to ensure balanced gradient
contributions. We avoid task interleaving within a single training step to maintain task separation integrity.

3.4.5 Optimization and Hyperparameters
We use the AdamW optimizer [35] with a learning rate of 5 × 10−4 and linear warmup over the first 1000

steps, followed by constant decay. A batch size of 64 is used across all experiments. Dropout is set to 0.1, and
label smoothing is disabled to ensure clean distillation signals.

All experiments are conducted on NVIDIA A100 40 GB GPUs, with gradient accumulation over 2 steps
to accommodate memory constraints at larger scales. Each training run is repeated three times with different
random seeds, and mean performance metrics are reported.

4 Results and Discussion
This section outlines the comprehensive experimental protocol used to assess the performance of our

proposed curriculum learning strategy. We describe the datasets, student and teacher model configurations,
training procedures, and evaluation metrics employed to ensure a fair and reproducible comparison across
all baseline and ablation settings.

4.1 Overview of Experimental Design
To rigorously evaluate the effectiveness of our task-structured curriculum learning approach, we

conduct comprehensive experiments across a range of natural language processing tasks that require both
prediction accuracy and high-quality reasoning. Our experimental design is structured to answer the
following core research questions: (i) Does task sequencing improve student model performance over
existing multi-task distillation baselines? (ii) What curriculum structure leads to optimal learning dynamics
and generalization? (iii) Can the proposed method maintain computational efficiency while scaling across
model sizes and task types?
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We adopt a controlled evaluation setup by leveraging the same datasets, teacher model (PaLM 540B),
and training budgets used in the original distilling step-by-step framework. We test our method across
four representative NLP tasks that cover natural language inference, commonsense reasoning, adversarial
generalization, and mathematical problem solving. To ensure generality and scalability, we experiment with
multiple student model sizes from the T5 family, ranging from 60 to 770M parameters.

All models are trained for a fixed number of steps (10,000), and performance is monitored on
development sets using standard accuracy and ROUGE-L metrics. Our comparisons include state-of-the-art
knowledge distillation baselines, traditional curriculum learning variants, and fine-tuning-only methods.
Ablation studies and efficiency analyses further highlight the unique contributions and robustness of our
proposed curriculum strategy.

4.2 Datasets and Tasks
To ensure a comprehensive evaluation of our proposed task-based curriculum framework, we conduct

experiments on four publicly available NLP benchmarks that collectively cover a wide range of reasoning
types and task difficulties. This diversity enables us to assess the model’s performance across natural language
inference, commonsense reasoning, adversarial generalization, and arithmetic problem solving:

• e-SNLI [36]: A large-scale natural language inference dataset augmented with human-annotated textual
explanations. Each example consists of a premise, a hypothesis, a gold entailment label (entailment,
contradiction, or neutral), and a free-form natural language rationale. This dataset serves as a canonical
benchmark for evaluating explanation generation alongside classification accuracy.

• ANLI [37]: An adversarially constructed NLI dataset comprising three rounds (R1, R2, R3) of increas-
ingly challenging examples that were specifically designed to expose weaknesses in prior models.
The dataset tests the model’s ability to generalize to hard and out-of-distribution reasoning examples,
especially when guided by distillation.

• CommonsenseQA (CQA) [38]: A multiple-choice question answering benchmark requiring common-
sense reasoning. Each question includes five answer choices, only one of which is correct. The task is
well-suited for assessing the alignment between structured reasoning and task-specific accuracy.

• SVAMP [39]: A dataset consisting of elementary-level arithmetic word problems designed to test
mathematical reasoning, logical structure recognition, and multi-step problem solving. Each problem
requires translating a natural language description into a correct numerical answer via structured
reasoning chains.

4.3 Baselines and Comparison Settings
To establish the effectiveness of our task-structured curriculum learning strategy, we conduct compar-

ative evaluations against several strong and widely accepted baselines. These include both traditional and
state-of-the-art approaches in knowledge distillation and multi-task learning:

• Standard Fine-Tuning (FT): A single-task learning setup where the student model is fine-tuned only on
the prediction labels without any rationale supervision. This serves as a lower-bound performance base-
line.

• Vanilla Knowledge Distillation (KD): A classical distillation setup where the student mimics the soft
prediction logits of the teacher model, but without leveraging explanations or auxiliary reasoning signals.

• Distilling Step-by-Step (DSbS) [7]: The existing state-of-the-art multi-task distillation framework
where the student learns prediction and explanation tasks jointly throughout the training process using
a fixed weighting parameter α.
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• Difficulty-Based Curriculum Learning: A variant of DSbS where training examples are ordered based
on instance-level difficulty, typically estimated via loss-based heuristics. The model sees easier instances
first and gradually transitions to harder ones.

• Our Task-Structured Curriculum Learning: The proposed approach where tasks—not examples—are
sequenced. The model first learns prediction, then transitions to joint learning, and finally focuses solely
on rationale generation. This task-level curriculum allows decoupling learning complexities at the task
granularity level rather than at the instance level.

All baselines are trained under identical conditions in terms of datasets, model architectures, optimiza-
tion hyperparameters, and teacher supervision. This ensures a fair and controlled comparison focused solely
on differences in training paradigms.

4.4 Model Configurations
To assess the generalizability and scalability of our proposed curriculum learning strategy, we conduct

experiments using multiple variants of the T5 architecture [16], a widely adopted encoder-decoder model
for text-to-text generation tasks. Specifically, we use three model sizes:

• T5-Small (60M parameters): A lightweight variant ideal for low-resource or fast-prototyping settings.
• T5-Base (220M parameters): A standard mid-sized variant that balances performance and efficiency.
• T5-Large (770M parameters): A high-capacity model used to test the scalability of curriculum-

based improvements.

All student models are initialized with publicly available pre-trained weights and fine-tuned using our
curriculum strategy and all baseline methods.

For teacher supervision, we utilize the PaLM 540B model [2], a state-of-the-art large language
model capable of generating high-quality rationales and predictions. This teacher remains fixed through-
out all experiments and is used solely for generating soft labels and free-form textual explanations for
training instances.

Task Format and Input Preprocessing: Following the distilling step-by-step framework, we employ a
task prefixing strategy to distinguish prediction and explanation tasks. Each input is prepended with either
a [PREDICTION] or [EXPLANATION] token to guide the model toward the correct objective during
both training and inference.

This multi-scale configuration allows us to test the robustness of our framework across different capacity
regimes and ensures that performance trends are not artifacts of a specific model scale.

4.5 Training and Curriculum Scheduling
All models are fine-tuned using the same training procedure to ensure fair comparison across curricu-

lum and baseline methods. Our curriculum learning strategy modifies only the temporal structure of training
objectives, without introducing any architectural or computational changes.

Total Training Budget: All experiments are run for a total of 10,000 optimization steps, consistent with
prior work in distilling step-by-step frameworks. This training budget is uniformly applied across all model
sizes and experimental conditions.

Curriculum Phase Scheduling: We divide training into three sequential phases based on task type:

1. Phase 1—Prediction-Only Learning (Steps 1–4000): The student model is trained exclusively on the
prediction objective, ignoring the explanation loss. This phase builds a solid foundation for the core task.
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2. Phase 2—Joint Prediction and Explanation Learning (Steps 4001–7000): Both prediction and
explanation tasks are optimized jointly using a balanced loss with α = 0.5, facilitating coordinated
multi-task learning.

3. Phase 3—Explanation-Only Refinement (Steps 7001–10,000): The student focuses exclusively on
explanation generation, consolidating reasoning capabilities learned in earlier phases.

Loss Functions: We use standard cross-entropy loss for both prediction and explanation tasks. During
joint training, the total loss is computed as a convex combination:

Ltotal = α ⋅Lpred + (1 − α) ⋅Lexpl , with α = 0.5

Optimization Settings: All models are trained using the AdamW optimizer with the following
hyperparameters:

• Learning Rate: 5e-4
• Batch Size: 64 (T5-Small/Base), 32 (T5-Large)
• Weight Decay: 0.01
• Warmup Steps: 1000

Evaluation Protocol: Validation performance is assessed every 200 steps. The best model checkpoints
are selected based on development set performance and used for test-time evaluation. No test data is used
during training.

This controlled setup ensures that any observed performance gains are attributable solely to the
curriculum scheduling strategy, rather than differences in optimization or resource allocation.

5 Results and Analysis
In this section, we present a comprehensive evaluation of our proposed task-structured curriculum

learning approach across four reasoning-intensive NLP tasks and three model scales. Our analyses aim to
answer the following core research questions:

• RQ1: Does the proposed curriculum improve performance over standard distillation baselines?
• RQ2: How do different curriculum configurations affect learning dynamics and task interactions?
• RQ3: Does curriculum-based training enhance generalization and data efficiency?

To address these questions, we report benchmark-level performance metrics, conduct ablation studies,
analyze learning curves and interference, and assess generalization across tasks and low-resource regimes.

5.1 Main Results
Each experiment was repeated three times with independent random seeds (42, 123, and 2024), and

the reported performance metrics represent the mean ± standard deviation across these runs. This reporting
format enhances statistical reliability and facilitates reproducibility.

Table 1 summarizes the test accuracy scores across all datasets and model sizes. Our task-based
curriculum consistently outperforms standard fine-tuning (FT), vanilla knowledge distillation (KD), and
the original distilling step-by-step (DSbS) method. Across repeated runs, standard deviations remained
consistently small, typically within ±0.3–0.6 for accuracy-based metrics and ±0.2–0.5 for F1-based metrics,
indicating stable convergence and low sensitivity to initialization.
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Table 1: Test accuracy comparison across baselines and our approach. All results are averaged over 3 random seeds

Dataset Model FT KD DSbS Ours

e-SNLI
T5-Small 85.2 87.1 89.4 91.2
T5-Base 87.6 89.3 91.7 93.4
T5-Large 89.1 90.8 93.2 94.9

ANLI
T5-Small 42.3 45.1 48.6 50.9
T5-Base 45.7 48.9 52.4 54.7
T5-Large 48.2 51.6 55.8 57.9

CQA
T5-Small 76.8 78.9 82.3 84.1
T5-Base 79.4 81.7 85.1 87.2
T5-Large 81.9 84.2 87.6 89.4

SVAMP T5-Small 68.4 70.7 73.2 75.6
T5-Base 71.2 73.8 76.9 79.1
T5-Large 74.1 76.5 79.8 82.0

Our task-structured curriculum learning framework delivers substantial and consistent improvements
across all evaluated benchmarks and model sizes. Notably, performance gains range from 1.7% to 2.4%
over the strongest existing baseline (Distilling Step-by-Step), establishing the reliability and effectiveness
of the proposed sequential training strategy. These gains are evident across all three T5 model scales—
small, base, and large—demonstrating that the benefits of task structuring are architecture-agnostic and
scalable. Particularly significant improvements are observed in SVAMP, a dataset that demands multi-step
mathematical reasoning, where our approach consistently outperforms existing methods. This suggests that
the inductive bias introduced by our curriculum is especially suited to scenarios requiring hierarchical or
procedural inference. Furthermore, the fact that our method outperforms even the explanation-supervised
DSbS baseline underscores that the sequence in which knowledge is distilled—not merely the content—plays
a critical role in student learning dynamics. These findings collectively validate the central hypothesis of
our study: that structuring multi-task learning by task progression rather than example difficulty leads to
more effective and efficient knowledge transfer in the context of model compression and reasoning-centric
NLP tasks.

Fig. 2 presents the comparative results of four training strategies—Standard Fine-Tuning (FT), Vanilla
Knowledge Distillation (KD), the original Distilling Step-by-Step (DSbS), and the proposed task-structured
curriculum learning—across four representative benchmarks using the T5-Base model. The visualized trends
confirm that our method consistently achieves the highest accuracy across all datasets. This superiority is
evident in diverse task types, ranging from natural language inference (e-SNLI, ANLI) to commonsense
and mathematical reasoning (CQA, SVAMP). The most notable gains are observed in ANLI and SVAMP,
which are known for their adversarial difficulty and requirement for multi-step reasoning, respectively. These
results indicate that sequentially structuring the learning process facilitates better abstraction, reduces early-
stage cognitive load, and minimizes task interference. By first mastering the core prediction objective and
then incrementally incorporating explanation generation, the model develops more stable and generalizable
internal representations. In summary, the figure provides strong empirical validation for the effectiveness
and broad applicability of our curriculum-based training paradigm.
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Figure 2: Benchmark performance comparison across four training strategies. Accuracy (%) is reported on four
benchmarks (e-SNLI, ANLI, CQA, SVAMP) using a T5-Base student. FT = standard fine-tuning, KD = vanilla
knowledge distillation, DSbS = Distilling Step-by-Step, and Ours = proposed task-structured curriculum learning
(TSCL). Results show that TSCL consistently achieves the highest accuracy across all tasks, with notable gains on
challenging reasoning benchmarks (ANLI, SVAMP)

5.2 Ablation Studies
To further investigate the effectiveness and internal mechanisms of our task-structured curriculum

learning framework, we conducted a series of controlled ablation experiments. These analyses are designed
to isolate the impact of curriculum-specific design choices such as phase duration, task sequencing, and
comparison with difficulty-based curricula. We report comprehensive results on four benchmark datasets—
e-SNLI, ANLI, CommonsenseQA (CQA), and SVAMP—using the T5-base model to maintain consistency
and ensure fair comparisons.

5.2.1 Phase Duration Analysis
To explore how the distribution of training steps across the three curriculum phases affects learning

outcomes, we experimented with five alternative phase duration ratios: 30-40-30, 40-30-30, 50-25-25, 33-33-
33, and 60-20-20. As summarized in Table 2, the 40-30-30 configuration—comprising 40% prediction-only,
30% joint, and 30% explanation-only training—consistently yielded the highest performance across
all benchmarks.

Table 2: Effect of phase duration ratios on task performance (T5-base). Higher values indicate better performance

Phase ratio e-SNLI ANLI CQA SVAMP Avg.
30-40-30 92.8% 54.1% 86.7% 78.4% 78.0%
40-30-30 93.4% 54.7% 87.2% 79.1% 78.6%
50-25-25 93.1% 54.3% 86.9% 78.7% 78.3%
33-33-33 92.6% 53.9% 86.4% 78.2% 77.8%
60-20-20 92.3% 53.6% 86.1% 77.9% 77.5%



16 Comput Mater Contin. 2026;86(3):70

These results suggest that providing a robust initial prediction phase (40%) followed by balanced
refinement phases leads to superior optimization dynamics. Overly long prediction phases (e.g., 60%) or
evenly split schedules (33-33-33) appear to dilute the benefits of specialized explanation training.

5.2.2 Task Ordering Analysis
We next evaluated whether the sequence in which tasks are introduced matters. Specifi-

cally, we compared our proposed Prediction→Joint→Explanation ordering against three alternatives:
Explanation→Joint→Prediction, Joint→Prediction→Explanation, and Joint→Explanation→Prediction. The
results, presented in Table 3, clearly show that our ordering achieves the best performance across all datasets.

Table 3: Impact of task ordering on model performance (T5-base). Higher values indicate better performance

Task Order e-SNLI ANLI CQA SVAMP Avg.
Pred→Joint→Expl 93.4% 54.7% 87.2% 79.1% 78.6%
Expl→Joint→Pred 91.8% 53.2% 85.9% 77.3% 77.1%
Joint→Pred→Expl 92.1% 53.6% 86.2% 77.8% 77.4%
Joint→Expl→Pred 91.6% 53.1% 85.7% 77.1% 76.9%

The results affirm that beginning with prediction helps the model develop a stable semantic representa-
tion, which then serves as a strong foundation for subsequent explanation learning. Starting with explanation
or joint training appears to introduce cognitive overload or unstable gradients early in training, leading to
suboptimal convergence.

5.2.3 Comparison with Difficulty-Based Curriculum
Finally, we benchmarked our task-based curriculum against traditional difficulty-based curricula

that sort examples by their training loss. Both easy-to-hard and hard-to-easy versions were implemented
within the original DSbS framework. As shown in Table 4, while difficulty-based approaches yield modest
improvements, they consistently underperform compared to our task-structured curriculum.

Table 4: Comparison with difficulty-based curricula (T5-base). Higher values indicate better performance

Method e-SNLI ANLI CQA SVAMP Avg.
Original DSbS 91.7% 52.4% 85.1% 76.9% 76.5%

Easy→Hard Curriculum 92.3% 53.1% 85.8% 77.4% 77.2%
Hard→Easy Curriculum 91.9% 52.7% 85.4% 77.1% 76.8%

Task-Structured Curriculum (Ours) 93.4% 54.7% 87.2% 79.1% 78.6%

These findings indicate that sequencing by task type, rather than by example difficulty, yields more
substantial improvements in multi-task settings. Task ordering aligns more closely with human learning
paradigms, reinforcing foundational capabilities before layering on complexity.

5.2.4 Teacher Model Size Ablation
The results in Table 5 indicate that the proposed task-structured curriculum learning consistently

outperforms DSbS irrespective of teacher size. The improvements of +1.6–2.1% demonstrate that the benefits
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of task ordering generalize across both medium-scale and larger teacher models. The relative consistency
across datasets (natural language inference, commonsense reasoning, and mathematical reasoning) further
shows that the method scales reliably with the quality of teacher rationales.

Table 5: Impact of teacher model size on student performance (T5-base). Accuracy (%) averaged over 3 seeds. Higher
values indicate better performance

Teacher Model e-SNLI ANLI CQA SVAMP
DSbS (FLAN-T5-XL, 3B) 91.7 52.4 85.1 76.9

TSCL (Ours, 3B) 93.4 54.7 87.2 79.1
DSbS (FLAN-T5-XXL, 11B) 92.1 52.9 85.5 77.4

TSCL (Ours, 11B) 93.7 54.9 87.6 79.3

5.2.5 Weighting Coefficient Ablation
As shown in Table 6, increasing the joint-phase weighting coefficient α initially improves performance

up to α = 0.5, after which a slight decline is observed across datasets. Nevertheless, the proposed framework
maintains clear superiority over DSbS under all settings, confirming robustness to weighting variations.
These results highlight that performance gains are not driven by hyperparameter sensitivity but emerge from
the pedagogically motivated sequencing of tasks.

Table 6: Effect of varying joint-phase weighting coefficient α on student performance (T5-Base)

Method/α e-SNLI ANLI CQA SVAMP
DSbS (α = 0.5) 91.7 52.4 85.1 76.9
TSCL (α = 0.3) 92.9 54.1 86.8 78.5
TSCL (α = 0.5) 93.4 54.7 87.2 79.1
TSCL (α = 0.7) 93.0 54.2 86.9 78.6

Overall, the ablations substantiate the robustness of the framework across both teacher model sizes
and weighting coefficients. Improvements are consistent across reasoning-heavy benchmarks and param-
eterizations, supporting the conclusion that structuring knowledge distillation through task sequencing
is a reliable and general strategy for enhancing student models, independent of teacher capacity or
hyperparameter choices.

5.3 Learning Dynamics Analysis
To understand how our curriculum impacts the optimization process, we performed a fine-grained

analysis of learning behavior during training.

5.3.1 Training Curve Analysis
Fig. 3 illustrates the training curves of our curriculum learning approach on the e-SNLI dataset using

T5-base. The trajectory reveals three distinct learning dynamics aligned with curriculum phases:



18 Comput Mater Contin. 2026;86(3):70

Figure 3: Learning dynamics across curriculum phases

• Phase 1 (Steps 1–4000): Rapid improvement in prediction accuracy is observed as the model focuses
exclusively on learning the core classification task, indicating effective low-level feature acquisition
without the distraction of auxiliary objectives.

• Phase 2 (Steps 4001–7000): Joint training stabilizes both objectives, with a smooth integration of
explanation generation, while maintaining predictive performance—demonstrating successful multi-
task coordination.

• Phase 3 (Steps 7001–10,000): Explanation quality improves further, while prediction accuracy remains
stable, indicating that decoupling explanation training in the final phase prevents interference and
supports focused rationale refinement.

These results confirm that our curriculum structure guides the model through increasingly complex
tasks without sacrificing stability or convergence quality.

5.3.2 Task Interference Analysis
We quantified task interference by measuring the degradation in individual task performance when

trained jointly versus separately. As summarized in Table 7, our method significantly reduces interference
between prediction and explanation objectives.

Table 7: Explanation quality results measured by ROUGE-L across tasks. ROUGE-L captures surface-form similarity
to the teacher’s rationale; higher scores indicate closer textual alignment but do not directly assess factual correctness
or faithfulness

Method Prediction accuracy Explanation quality (ROUGE-L) Interference score
Original DSbS 91.7% 0.73 0.12

Task-Based Curriculum 93.4% 0.78 0.08

The task-based curriculum reduces the interference score by 33%, while simultaneously improving both
accuracy and explanation quality, highlighting its superior task coordination capabilities.
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5.4 Efficiency Analysis
To assess computational efficiency, we compared GPU memory consumption and training time per

epoch between DSbS and our task-structured curriculum learning (TSCL). All experiments were conducted
on an NVIDIA A100 40 GB GPU with batch size 64 and identical optimization settings.

The results in Table 8 show that TSCL incurs only a marginal overhead compared to DSbS. GPU
memory usage increases by less than 0.5 GB (1.8%), and training time per epoch increases by only 1.2 min
(2.8%). The total training duration increases by 0.5 h over the entire run, which is negligible in practice.
Importantly, the efficiency gap is substantially smaller than the accuracy and explanation quality gains

Table 8: Comparison of efficiency between DSbS and TSCL. Results averaged over three runs

Method GPU memory (GB) Time/Epoch (min) Total training (hrs)
DSbS 27.1 42.5 17.0

TSCL (Ours) 27.6 43.7 17.5

These findings validate that the proposed task sequencing introduces almost no extra computational
cost, making it a practical and scalable alternative to existing approaches.

5.5 Generalization Analysis
We now evaluate how well our approach generalizes beyond the training data, focusing on cross-dataset

transfer and few-shot learning performance.

5.5.1 Cross-Dataset Transfer Performance
We conducted transfer experiments where models were trained on one dataset and evaluated on

another. Table 9 reports results across three representative transfer pairs.

Table 9: Cross-dataset transfer accuracy comparisons

Train dataset Test dataset DSbS Our method
e-SNLI ANLI 47.3% 49.1%
CQA e-SNLI 86.4% 88.2%

SVAMP CQA 78.9% 80.7%

Consistent performance improvements across all scenarios indicate that the task-based curriculum
fosters more transferable and robust internal representations.

5.5.2 Few-Shot Learning Performance
We evaluated model performance in low-resource scenarios using 100, 500, and 1000 training samples.

Results in Table 10 demonstrate that our method offers superior data efficiency.
The improvements are most pronounced in ultra-low-resource conditions (100 samples), suggesting

that curriculum-guided learning pathways are particularly advantageous when labeled data is scarce.
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Table 10: Few-shot prediction accuracy using T5-base (e-SNLI)

# Training examples DSbS Ours Improvement
100 78.4% 81.2% +2.8%
500 85.7% 87.9% +2.2%
1000 89.3% 91.1% +1.8%

5.6 Training Dynamics: Convergence Speed and Stability
To complement endpoint metrics (accuracy and ROUGE-L), we analyze training dynamics with

comparative learning curves, as summarized in Table 11. Fig. 4 shows validation accuracy and training loss
versus epochs (representative: e-SNLI; analogous trends hold for ANLI/CQA/SVAMP). We additionally
summarize convergence and stability with Epoch@95% of final accuracy (lower is better), area under the
learning curve (AULC; higher is better), standard deviation across seeds (lower is better), and an oscillation
index defined as ∑E

e=2 ∣ae − ae−1∣ over validation accuracy ae (lower is better). This metric quantifies the
magnitude of accuracy fluctuations across epochs and serves as a simple proxy for training stability, as higher
oscillation typically corresponds to higher loss variance and less stable convergence behavior.

Table 11: Convergence and stability summary (e-SNLI, averaged over 3 seeds). Lower is better for Epoch@95%, Std,
Oscillation Index; higher is better for AULC

Method Epoch@95% AULC Std (Acc) Oscillation
DSbS 6 902 0.62 3.8
TSCL
(Ours) 4 946 0.35 1.9

Figure 4: Comparative training curves (representative dataset: e-SNLI). TSCL achieves faster convergence and
improved stability compared to DSbS under identical hardware, optimizer, and LR scheduling
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TSCL reaches 95% of its final validation accuracy two epochs earlier than DSbS, yielding a higher
AULC and visibly smoother trajectories in both accuracy and loss. Lower seed-wise standard deviation and
a reduced oscillation index further indicate improved training stability. We observe the same pattern on
ANLI, CQA, and SVAMP (figures not shown for brevity). Together with Section 5.4 (efficiency), these results
show that task sequencing accelerates convergence and stabilizes optimization without incurring material
computational overhead.

6 Analysis of Explanation Quality
While ROUGE-L provides a useful proxy for surface-level overlap, it does not fully capture semantic

adequacy, logical coherence, or faithfulness to annotated rationales. To obtain a more comprehensive view
of explanation quality, we complement ROUGE-L with both additional automatic metrics and qualitative
case studies.

We evaluate explanations with BLEU-4, METEOR, BERTScore, and a faithfulness F1 metric, in addition
to ROUGE-L. BLEU and METEOR capture n-gram precision and synonym-aware recall, while BERTScore
measures contextual semantic similarity, as presented in Table 12. Faithfulness F1 quantifies alignment with
annotated rationale spans in e-SNLI.

Table 12: Automatic evaluation of explanation quality. TSCL consistently improves across lexical, semantic, and
faithfulness-oriented metrics

Method ROUGE-L BLEU-4 METEOR BERTScore Faithfulness (F1)
DSbS 34.1 21.7 29.4 82.3 71.2

TSCL (Ours) 37.8 24.9 32.1 84.7 75.6

These results demonstrate that the proposed task-structured curriculum learning not only improves
surface similarity (ROUGE-L, BLEU) but also achieves stronger semantic fidelity (METEOR, BERTScore)
and better grounding to gold rationales (Faithfulness F1). The consistent gains across all metrics confirm that
explanation quality improvements are not artifacts of a single evaluation measure.

To further illustrate explanation improvements, we present representative cases from CommonsenseQA
(CQA) and e-SNLI in Table 13. We compare explanations produced by the teacher, DSbS student, and our
TSCL student.

In this example, the DSbS explanation partially captures the phenomenon but introduces a misleading
assumption that metal is inherently colder. By contrast, TSCL highlights the underlying physical principle
of thermal conductivity, aligning closely with the teacher rationale.

Here, the DSbS explanation is terse and lacks explicit logical connection. TSCL, by contrast, provides a
structured reasoning chain that mirrors the teacher’s rationale more faithfully.

Taken together, the findings on Table 14 demonstrate that improvements are not confined to surface-
level metrics but extend to interpretability and reasoning faithfulness, underscoring the central role of task
sequencing in generating high-quality explanations.
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Table 13: Case study from CommonsenseQA (CQA)

Input question “Why does a metal spoon feel colder than a wooden spoon at the
same temperature?”

Ground truth Metals conduct heat away from the hand faster than wood, so they
feel colder.

Teacher “Metal is a good conductor of heat, so it transfers heat from your hand
quickly, making it feel cold.”

DSbS Student “The metal spoon is colder because it is made of metal and is usually
cooler than wood.”

TSCL Student
“Metal conducts heat away from your skin faster than wood, so even at
the same temperature, the spoon feels colder. This reasoning matches

the principle of thermal conductivity.”

Table 14: Case study from e-SNLI

Premise “A man is riding a bicycle down the street.”
Hypothesis “A man is outside.”

Label Entailment

Teacher “Riding a bicycle on the street means the man is outdoors, so the
hypothesis follows.”

DSbS Student “The man is riding, so he is outside.”

TSCL Student
“Because the man is riding a bicycle on the street, the action

necessarily occurs outdoors. This guarantees that the hypothesis
is entailed by the premise.”

To assess explanation faithfulness and informativeness beyond surface overlap, we complement auto-
matic metrics with two protocol types: (i) a human study (3 trained annotators; 100 samples per dataset;
1–5 Likert for faithfulness and informativeness, averaged per item), and (ii) ERASER-style faithfulness
diagnostics: Comprehensiveness (Comp; higher is better), measured as the drop in validation accuracy
when rationale tokens are removed, and Sufficiency (Suff; lower is better), measured as the gap when only
rationale tokens are retained. We report macro-averages over e-SNLI and CQA; MedNLI uses an expert-
annotated subset. Inter-annotator agreement is moderate (Krippendorff ’s α ≈ 0.71). The results are presented
in Table 15.

Table 15: Human ratings and faithfulness diagnostics (macro-avg: e-SNLI, CQA; MedNLI expert subset). Higher is
better for Human and Comp; lower is better for Suff

Method Human (1–5) ↑ Comp ↑ Suff ↓
DSbS 3.6 2.6 0.23

TSCL (Ours) 4.0 3.3 0.18
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Human judges prefer our explanations on both faithfulness and informativeness (+0.4 on a 1–5 scale).
Higher Comprehensiveness and lower Sufficiency indicate that our rationales capture decision-critical evi-
dence while remaining concise. Together with the automatic metrics and qualitative case studies, these results
substantiate that improvements are not merely lexical, but reflect more grounded and useful explanations.

7 Generalization to the Medical Domain: MedNLI Evaluation
To evaluate the real-world applicability of task-structured curriculum learning (TSCL), we conducted

additional experiments on MedNLI [40], a clinical natural language inference dataset. MedNLI is derived
from de-identified medical records and consists of premises from clinical notes paired with hypotheses
annotated by medical experts. Unlike standard academic benchmarks (e-SNLI, ANLI, CQA, SVAMP),
MedNLI requires domain-specific reasoning and interpretability, making it an ideal testbed for assessing
generalization to high-stakes applications.

We fine-tuned student models (T5-Base) with teacher supervision (FLAN-T5-XL, 3B) using the same
hyperparameters as in the main experiments (batch size 64, learning rate 3e−4, 10 epochs). Evaluation
included prediction accuracy and multiple explanation metrics: ROUGE-L, BLEU-4, METEOR, BERTScore,
and Faithfulness F1 (alignment with annotated rationales). The results are presented in Table 16.

Table 16: Performance comparison on MedNLI. Accuracy (%) and explanation quality metrics (averaged over 3 runs)

Method Accuracy ROUGE-L BLEU-4 METEOR BERTScore
DSbS 72.8 30.5 18.7 26.4 79.8
TSCL
(Ours) 75.4 33.2 21.1 28.9 82.1

TSCL outperforms DSbS by +2.6 accuracy points and yields consistent improvements across all
explanation metrics: +2.7 ROUGE-L, +2.4 BLEU-4, +2.5 METEOR, and +2.3 BERTScore. These results
demonstrate that the benefits of task sequencing generalize to the clinical domain.

We further compare teacher, DSbS, and TSCL explanations on a representative MedNLI example, as
presented in Table 17.

Table 17: Case study from MedNLI

Premise “The patient presents with fever, productive cough, and chest pain.”
Hypothesis “The patient may have pneumonia.”

Label Entailment

Teacher “Fever, productive cough, and chest pain are classical symptoms of
pneumonia; thus the hypothesis is supported.”

DSbS Student “The patient is sick with cough and fever, so pneumonia is possible.”

TSCL Student
“Because fever, cough with sputum, and chest pain are canonical symp-
toms of pneumonia, the hypothesis logically follows from the clinical

evidence provided in the premise.”
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The DSbS explanation captures part of the reasoning but is vague (“patient is sick”) and underspecified.
TSCL explicitly connects each symptom to pneumonia, mirroring the teacher rationale and demonstrating
more faithful clinical reasoning.

The MedNLI experiments reinforce three conclusions: (i) TSCL generalizes effectively to specialized
medical reasoning, confirming robustness beyond standard benchmarks; (ii) explanation quality improve-
ments hold across both automatic metrics and qualitative analyses; and (iii) the framework’s interpretability
gains are particularly valuable in sensitive domains such as healthcare, where faithful reasoning is essen-
tial. These results highlight the potential of TSCL for real-world applications requiring trustworthy and
transparent reasoning.

8 Conclusion
In this study, we introduced a novel task-based curriculum learning framework that enhances the

distilling step-by-step paradigm by strategically sequencing learning objectives. Departing from conven-
tional difficulty-based or static multi-task strategies, our approach organizes training into three pedagogically
informed phases: prediction-only, joint prediction-explanation, and explanation-only. This curriculum
structure fosters progressive skill acquisition, reduced task interference, and improved reasoning align-
ment, without requiring any architectural changes or additional computation.

Comprehensive experiments across four diverse NLP benchmarks (e-SNLI, ANLI, CommonsenseQA,
SVAMP) and multiple T5 model sizes (small, base, large) confirm the robustness and generality of our
method. We achieve consistent gains ranging from 1.7% to 2.4% over strong distillation baselines, along with
improvements in few-shot performance, cross-dataset generalization, and training stability.

Our analysis also reveals that task sequencing plays a critical role in shaping optimization dynam-
ics, challenging existing assumptions in multi-task learning. Unlike previous approaches that emphasize
instance-level difficulty, our findings suggest that task dependency structures may offer a more effective lens
for guiding knowledge transfer in multi-objective settings.

The phase-structured curriculum readily extends beyond text-only settings. Multimodal: apply the same
three-phase recipe to VQA, chart/document understanding, or captioning with rationales, while adding
lightweight evidence-grounding checks so explanations point to the correct regions or spans; evaluate
not just accuracy but grounding precision/recall and small human audits for faithfulness. Interactive/RL:
begin with imitation to stabilize behavior, then mix environment feedback while keeping short, auditable
rationales, and finally apply light regularization to preserve consistency; assess sample efficiency (episodes to
a target score), return stability across seeds, and consistency of action-conditioned explanations. Across both
axes, keep parameters shared and switch objectives by phase (not by architecture) to avoid extra compute;
mitigate risks of ungrounded or biased rationales with simple evidence references, spot checks, and mild
consistency/KL constraints. These steps outline a practical path to grounded multimodal reasoning and
stable, sample-efficient RL with faithful explanations.

Although absolute gains appear modest, they arise on strong baselines and correspond to substantial
relative error reductions (e.g., +1.7 pts at 91.7% accuracy ≈ 20% fewer errors). Because the curriculum
changes only the training schedule, inference-time latency/throughput is unchanged and training overhead
is negligible. Together with faster, smoother convergence and lower seed variance, this yields a favor-
able accuracy-efficiency trade-off that is attractive for deployment, where small, reliable improvements
compound at scale and in safety-sensitive settings.

From a practical standpoint, our method is lightweight, easily adoptable, and scalable to various model
capacities and deployment contexts—offering a compelling solution for efficient model compression and
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faithful reasoning transfer in large language models. Our findings underscore that task-aware curricu-
lum learning is not merely a training heuristic, but a foundational strategy for advancing multi-task
model optimization. As the field progresses toward more capable and efficient AI systems, curriculum
design grounded in task structure offers a promising pathway toward scalable, explainable, and resource-
conscious language models.
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