
echT PressScience

Doi:10.32604/cmc.2025.071269

ARTICLE

Graph Guide Diffusion Solvers with Noises for Travelling Salesman Problem

Yan Kong1, Xinpeng Guo2 and Chih-Hsien Hsia3,4,*

1School of Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
2School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
3Department of Computer Science and Information Engineering, National Ilan University, Yilan, 26047, Taiwan
4Office of Research and Industry-Academia Development, Chaoyang University of Technology, Taichung, 413310, Taiwan
*Corresponding Author: Chih-Hsien Hsia. Email: hsiach@niu.edu.tw
Received: 04 August 2025; Accepted: 01 October 2025; Published: 12 January 2026

ABSTRACT: With the development of technology, diffusion model-based solvers have shown significant promise in
solving Combinatorial Optimization (CO) problems, particularly in tackling Non-deterministic Polynomial-time hard
(NP-hard) problems such as the Traveling Salesman Problem (TSP). However, existing diffusion model-based solvers
typically employ a fixed, uniform noise schedule (e.g., linear or cosine annealing) across all training instances, failing
to fully account for the unique characteristics of each problem instance. To address this challenge, we present Graph-
Guided Diffusion Solvers (GGDS), an enhanced method for improving graph-based diffusion models. GGDS leverages
Graph Neural Networks (GNNs) to capture graph structural information embedded in node coordinates and adjacency
matrices, dynamically adjusting the noise levels in the diffusion model. This study investigates the TSP by examining
two distinct time-step noise generation strategies: cosine annealing and a Neural Network (NN)-based approach. We
evaluate their performance across different problem scales, particularly after integrating graph structural information.
Experimental results indicate that GGDS outperforms previous methods with average performance improvements
of 18.7%, 6.3%, and 88.7% on TSP-500, TSP-100, and TSP-50, respectively. Specifically, GGDS demonstrates superior
performance on TSP-500 and TSP-50, while its performance on TSP-100 is either comparable to or slightly better than
that of previous methods, depending on the chosen noise schedule and decoding strategy.
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1 Introduction
Combinatorial Optimization (CO) represents a category of mathematical optimization problems dis-

tinguished by a solution space comprising a finite number of discrete candidate solutions, typically formed
from combinations of a limited set of objects, such as numbers, items, nodes, etc. The objective of CO is
to identify an optimal solution among these discrete candidates such that the specified objective function
attains either its maximum or minimum value while adhering to certain constraints. As an Non-deterministic
Polynomial-time hard (NP-hard) problem, CO primarily depends on expert knowledge and handcrafted
heuristic methods to approximate the optimal solution [1]. The Traveling Salesman Problem (TSP), a classic
challenge in the field of CO, is defined as follows: Given a group of cities and the distance between each pair
of cities, the TSP requires finding the shortest path so that the traveling salesman visits each city exactly once
and eventually returns to the starting one. The TSP has extensive real-world applications, such as optimizing
routes in logistics and supply chain management [2], as well as in the domain of traffic management [3],
among other uses. The TSP has many variants that introduce additional constraints and complexities, making
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it more applicable to real-world scenarios. One such variant is the Generalized Traveling Salesman Problem
(GTSP), where cities are grouped into clusters, and the salesman must visit exactly one city from each
cluster [4]. Another variant is the Multiple Traveling Salesmen Problem (mTSP), where multiple salesmen
start from a common depot, visit different cities, and return to the depot [5].

In recent years, the rapid advancement of Deep Learning (DL) has significantly contributed to progress
in CO. Conventional methods for tackling CO issues are typically categorized into three groups, differenti-
ated by their solution generation strategies: (1) Methods that construct solutions in an Autoregressive (AR)
manner, (2) Those that employ Non-Autoregressive (NAR) approaches, and (3) Heuristic-based solvers that
focus on improving existing solutions. The core idea of AR solvers is to treat the problem solution as a
sequential process, where partial solutions are constructed step by step, with each decision conditioned on
the previous outputs (see, e.g., the pointer-based autoregressive framework proposed in [6] and the attention-
based autoregressive model in [7] for TSP and related routing problems). Since each decision must consider
the results of all prior steps, this makes it difficult to scale to larger problems. Next, we have NAR solvers,
which differ from AR solvers primarily in the way solutions are generated. NAR solvers typically rely on the
assumption of conditional independence, where each part of the solution can be decided independently. This
assumption enables the solver to parallelize the calculation of each part of the solution, producing the entire
solution in a single step. However, because of this simplified assumption, NAR solvers ignore the potential
dependencies between different parts of the solution, which may lead to suboptimal final results [8–11]. The
third method starts with an initial feasible solution and applies local search strategies (such as the simulated
annealing method [12] among others) to fine-tune it, iterating until a feasible solution is found [13]. This
approach combines the efficiency of heuristic algorithms with the learning capabilities of Neural Networks
(NNs) to find better solutions, often used as a post-processing step to optimize an initial solution and improve
the final outcome. By comparing these three methods, we can see that each has its own advantages and
limitations. Combining the strengths of DL with traditional optimization methods holds great promise for
providing more powerful solutions to CO problems.

Many traditional Neural Combinatorial Optimization (NCO) solvers based on NNs aim to minimize
the average objective function across all training instances during the training process [6,7]. However, in
pursuit of overall average performance, this approach may sacrifice optimal solutions for some instances,
particularly those that are edge cases differing significantly from the majority of the data. To solve this
problem, Sun and Yang [14] introduced Diffusion Solvers for Combinatorial Optimization (DIFUSCO),
a graph-based diffusion solver that utilizes the capability of diffusion models to learn and produce high-
quality solution distributions for various problem instances. Diffusion models, one of the rapidly developing
generative models in recent years [15,16], are particularly well-suited to solve the above problem. These
models are capable of learning the fundamental distribution of data, enabling them to generate new data
samples. In the realm of CO problems, DIFUSCO has shown strong performance in solving TSP and
Maximal Independent Set (MIS) problems. However, a key issue with current approaches is the use of fixed
noise schedules for noise generation, such as linear or cosine annealing schedules [17]. These noise schedules
are independent of the specific graph structure. In the case of TSP, for example, each problem instance is
unique, especially for the edge cases with distinct characteristics. Therefore, it is crucial to control the noise
level based on the graph structure of each instance to better handle the diversity and complexity of graph
structures. By carefully designing the noise schedule, the efficiency and quality of the model’s generation can
be improved [18,19]. A well-designed dynamic noise schedule [20] is essential for more effectively exploring
the solution space during the denoising process, reducing unnecessary search, and ultimately enhancing
overall search efficiency.

Based on this, we propose a learnable noise scheduling method. Specifically, by integrating Graph
Neural Networks (GNNs) with an information propagation mechanism, the noise levels in the diffusion
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model are dynamically adjusted, particularly tailored for the TSP. The proposed method, termed Graph-
Guided Diffusion Solvers (GGDS) for CO, utilizes GNNs to capture structural information encoded in city
coordinates and the adjacency matrix, and subsequently generates a noise schedule conditioned on the graph
structure. The core of GGDS lies in the noise schedule generated by the Graph Neural Network (GNN), which
encapsulates information about the graph structure. This means that the noise injection process takes into
account the inherent structure of the problem. Such noise injection helps preserve the graph structure during
the denoising process, enabling a more accurate reconstruction of solutions that align with the structural
characteristics of the graph. When the noise schedule is closely tied to the graph structure, each step in
the denoising process is more likely to move toward the optimal solution. This method, which combines
the graph structure-awareness of GNN with the flexible noise adjustment mechanism of diffusion models,
offers a novel perspective for solving CO problems. By incorporating gradient feedback from the target
optimization in the denoising steps, GGDS can efficiently reconstruct low-cost solutions while enhancing
the diffusion process.

To summarize, we identify a key limitation of existing diffusion-based CO solvers: their instance-
agnostic, fixed noise schedules inevitably diminish graph-specific features. GGDS addresses this bottleneck
by incorporating a lightweight GNN that adjusts the noise levels according to the graph structure of
the problem instance. As a result, GGDS transforms the noise schedule into a learnable, structure-aware
component, providing a novel approach to solving combinatorial optimization problems. GGDS learns an
instance-specific noise schedule via a lightweight GNN, fuses it with the temporal schedule, and boosts TSP
solution quality by up to 88.7% without extra inference cost.

2 Related Work
In this part of the document, we offer a summary of conventional approaches to addressing CO

problems, as well as insights into recent developments in NCO methods and the evolution of diffusion-based
models. As for the CO problem-solving techniques, they are generally divided into two main types depending
on their solution generation process: those that build solutions from scratch, known as construction solvers,
and those that refine existing solutions, referred to as improvement solvers.

2.1 Construction Solver
Constructed solvers can be classified into AR and NAR types depending on how they generate the

solution. AR models build the solution step by step during decoding, progressively adding one node at a time
to the partial solution until a full solution to the TSP problem is obtained. In [21], the authors were the first
to combine Pointer Networks (PtrNet) [6] with Deep Reinforcement Learning (DRL), achieving state-of-
the-art (SOTA) results. Furthermore, Kool et al. [7] used Attention Models (AM) to address related routing
problems, and Kwon et al. [22] further expanded on these AM by leveraging symmetry in Reinforcement
Learning (RL) methods, introducing the Policy Optimization with Multiple Optima (POMO) model to
address the issue of multiple optimal solutions in AM models. Pan et al. [23] proposed a hierarchical
framework, H-TSP, based on DRL. It utilizes a strategy of breaking down extensive issues into smaller, more
easily handled sub-tasks through a divide-and-conquer approach, solving each subproblem separately. This
method effectively resolves the problem of inefficiency when solving large-scale TSP instances. However,
since AR models require step-by-step computation of outputs at each step, where each step’s output depends
on the previous step’s result, the inference speed tends to slow down. In contrast, NAR models typically
generate the entire solution in one step. For instance, Joshi et al. [9] used deep Graph Convolutional Networks
(GCN) to construct efficient TSP graph representations and employed highly parallelized beam search to
output the solution path for the Euclidean TSP problem in a NAR manner. Asani et al. [24] propose an
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innovative constructive heuristic algorithm, the Half Max Insertion Heuristic (HMIH), for solving the TSP.
This method effectively reduces the cost of path growth by constructing an initial sub-tour and iteratively
inserting nodes that satisfy the “half maximum distance” criterion. Xiao et al. [25] first proposed a RL-
based NAR model for solving the TSP. By leveraging a specialized GNN architecture and an enhanced RL
strategy, the model efficiently solves the TSP while maintaining solution quality and strong generalization
ability. Although this NAR model accelerates the decoding process by assuming conditional independence,
it neglects the potential dependencies between different parts of the solution, which may lead to suboptimal
performance. Recently, Fu et al. [26] improved the solution capability of the NAR model by constructing
heatmaps and incorporating Monte Carlo Tree Search (MCTS). While MCTS can effectively explore the
solution space, its high time complexity may result in longer runtime. Additionally, the accuracy and sparsity
issues of the heatmaps can affect the search efficiency and solution quality of MCTS. The limitations of
MCTS’s sampling strategy and search depth could also lead to local optima, thus reducing the quality of
the solutions.

2.2 Improvement Solver
In contrast to constructed solvers, there are improved solvers, which iteratively optimize the results

obtained by previous algorithms to search for better solutions. For example, Costa et al. [27] proposed a
policy gradient algorithm that learns a heuristic strategy based on the 2-Optimization (2OPT) operation.
This strategy selects when to apply the 2OPT operation given the current solution, and by combining
DRL with the 2OPT operation, it effectively improves the solution quality for the TSP. But the 2OPT
operation incurs significant computational overhead in large-scale TSP instances and primarily focuses on
optimizing path length, making it unsuitable for directly handling TSP variants with additional constraints.
Traditional Genetic Algorithms (GA) can enhance the quality of TSP solutions by employing suitable
crossover operators. For instance, Rani and Kumar [28] proposed a genetic algorithm that incorporates
improved crossover and mutation strategies to optimize TSP path solutions. Their method, which utilizes the
Order Crossover 6 (OX6) operator and inversion mutation, outperforms traditional GA approaches in terms
of both convergence speed and accuracy, as demonstrated on the TSPLIB dataset. This approach provides
a valuable reference for improvement-based heuristic algorithms. Additionally, the Composite Sequence
Crossover (CSCX1) introduced by Ahmed et al. [29] is another example of such methods. These algorithms
fall within the category of improvement-based solvers, typically beginning with an initial population and
progressively refining solutions through crossover and mutation operations.

2.3 Diffusion Probabilistic Models
The use of generative models for solving CO problems has garnered growing interest in recent years.

A notable example is [30], which introduced a generative model for the Vehicle Routing Problem (VRP).
The diffusion model [31], as a generative model, has also attracted considerable attention from researchers.
By gradually introducing Gaussian noise to clean data in the forward process and learning to remove the
noise in the reverse process, the model learns to capture the distribution of high-quality solutions. This
allows the diffusion model to produce new sample data which are similar to the training data. Recent
studies have shown that diffusion models have demonstrated immense potential in video generation [32,33],
audio generation [34], and text generation [35,36]. Furthermore, Du et al. [37] applied diffusion models
to decompose the Global Routing (GR) problem into two phases: the hub-generation phase and the pin-
hub-connection phase. This approach effectively addresses a core and time-consuming challenge in Very
Large-Scale Integration (VLSI) design. More recently, research by [14] demonstrated that applying diffusion
models to CO problems can still yield highly effective results, contributing to new advancements in the field.
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In this work, the GGDS can be viewed as a type of NAR-based constructive solver, which iteratively opti-
mizes the final solution using a diffusion model. Unlike existing methods [14], GGDS not only incorporates
time step information in the noise schedule but also introduces graph structural information.

3 Proposed Method

3.1 Preliminaries: Diffusion Models for TSP
3.1.1 Problem Definition

Consistent with the definitions of CO problems in [14,38], we represent an instance of the CO problem
by a graph G = (V , E), where V and E respectively represent the set of vertices and edges, in the graph.
Following standard notation in [39], we define χs = {0, 1}N as the solution space for an instance s of the CO
problem, where N is the number of edges in the graph G, and cs (x) = cost (x , s) as the cost of an instance
s given a solution x, where x ∈ χs . The present study concentrates on a quintessential CO issue: the TSP. An
instance of TSP is established on an undirected, complete graph G = (V , E), with V denoting the collection
of nodes that include n cities. In the edge set E, each element ei j carries a non-negative weight, signifying
the Euclidean distance between cities i and j. A TSP route is represented as an ordering of the n city nodes,
expressed as π = {π1 , π2, . . . , πn}, where πi ≠ π j, ∀i ≠ j. Consequently, the TSP is framed as the quest for a
route within G that constitutes a Hamiltonian cycle, aiming to minimize the aggregate weight of the cities
along the cycle.

Within this study, we conceptualize the TSP as an issue involving the selection of edges. The solution
space, denoted by χs , is composed of binary indicators xi j that signify the inclusion of edge (i , j) within
the solution set x. The associated cost is determined through the formula: cs (x) = Σ i xi ⋅w(s)i , with w(s)i
denoting the weight attributed to edge i within instance s. The aim of the CO problem is to identify an best
and feasible solution xs∗ for a specific instance s, characterized by: xs∗ = argmin

x∈χs

cs (x), which essentially

involves reducing the cost associated with instance s to its minimum.

3.1.2 Diffusion Model in CO Problem
Based on the design in [14], this work applies the diffusion model to generate solutions for the CO

problem, treating it as a generative task, pθ (x∣G) represents the finally generated probability distribution
of the solution x given a specific problem instance graph G. The diffusion model comprises a forward noise-
adding process and a reverse denoising process. The forward noise-adding process, known as the diffusion
process, starts with the original data q (x0) and gradually adds noise, creating a sequence of latent variables
x1∶T = x1 , x2, . . . , xT . The formal expression for this process can be written as:

q (x1∶T ∣ x0) = ΠT
t=1q (xt ∣xt−1) (1)

where the term q (xt ∣ xt−1) represents the process of progressively corrupting the data at time step t − 1 to
obtain the latent variable at the next time step t. On the other hand, the denoising process begins with the final
latent variable p (xT) and gradually eliminates the noise to reconstruct the clean data, eventually reaching
the target data distribution. This denoising process can be formally described as:

pθ (x0∶T) = p (xT)ΠT
t=1 pθ (xt−1∣ xt) (2)

where pθ (xt−1∣ xt) represents the conditional probability for the reverse process, which gradually transforms
the latent variable back to the original data distribution. This denoising process is learned by the model,
where θ denotes the model parameters.



6 Comput Mater Contin. 2026;86(3):26

A primary goal in training the model is to ensure that the distribution pθ (x0∣G), as learned by
the model, closely mirrors the actual data distribution q (x0∣G). This objective is commonly realized by
optimizing the negative log-likelihood, expressed as follows:

Lreconstruc t ion = E [− log pθ (x0)] ≤ Eq( x1∶T ∣x0)[∑
t>1

DKL(q (xt−1∣ xt , x0) ∣∣pθ (xt−1∣ xt)) − log pθ (x0∣ x1)] + C

(3)

where, C signifies a constant, and DKL denotes the Kullback-Leibler (KL) divergence, a metric for assessing
the divergence between the distribution predicted by the model and the actual distribution.

3.1.3 Forward Time Diffusion Process
In this work, we follow the approach outlined in [14], but focus exclusively on the discrete diffusion

model. In the discrete diffusion model, the forward noise-adding process is defined as:

q (xt ∣ xt−1) = Cat (xt ; p = x̃t−1Qt) (4)

where the transition probability matrix Qt is of the form:

Qt = [
(1 − βt) βt

βt (1 − βt)
] (5)

with Qt ε [0, 1]2×2. This matrix defines the probability of transitioning from one time step to another in the
diffusion model, where βt controls the degree of noise introduced at each step, representing the corruption
rate of the data. The parameter βt lies between 0 and 1, and 1 − βt represents the proportion of original
information retained at each time step.

In the context of the CO problem, the solution vector can be expressed as χs = {0, 1}N , and here, x̃ is the
extended vector of χs , i.e., x̃t ∈ {0, 1}N×2, where each row is a one-hot vector. In specific, the noising process is
achieved by multiplying x̃ at step t with the transition matrix Qt . This operation gradually corrupts each row
of x̃t by flipping the active entry according to the probabilities defined in Qt , simulating the addition of noise.
In the forward noising process of the discrete model, the goal is for the data to be progressively noised by
polynomial noise until, at the final time step T , the original structure and information of the data are nearly
entirely replaced by noise, with xT approaching a uniform distribution, i.e., xT ∼ Uni f orm(⋅). Thus, in the
discrete diffusion model, after introducing noise over t steps starting from x0, the marginal distribution at
step t is given by:

q (xt ∣ x0) = Cat (xt ; p = x̃0Qt) (6)

where Qt = Q1Q2 . . . Qt . The posterior distribution at step t − 1 can be derived using Bayes’ theorem:

q (xt−1∣ xt , x0) =
q (xt ∣ xt−1 , x0) q (xt−1∣ x0)

q (xt ∣ x0)
= Cat (xt−1; p = x̃t QT

t ⊙ x̃0Qt−1

x̃0Qt x̃T
t

) (7)

The denoising Neural Network (NN) is trained to predict the clean data pθ (x̃0∣xt) from the noisy data
xt . In the reverse diffusion process, at each iteration, the predicted x̃ e poch

0 for the current epoch is generated
and used as x0 for the next step in Eq. (7). This procedure is repeated until all the predefined denoising steps
have been completed. This process can be expressed as:
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pθ (xt−1∣ xt) = ∑
x̃0

q (xt−1∣ xt , x̃0) pθ ( x̃0∣ xt) (8)

3.1.4 Denoising and Decoding
In this study, the choice of denoising network and the design of the decoding strategy follow prior

work [14,40]. In the decoding process, diffusion models generate the final predicted variables x through a
gradual denoising process. Whether it is a continuous diffusion model that quantizes continuous variables
to obtain predictions, or a discrete diffusion model that uses Bernoulli sampling to derive the final predicted
variables, these direct prediction methods lose the confidence information for each variable. This confidence
information is crucial for subsequent decoding tasks, such as conflict resolution. To retain this confidence
information, we adjust the diffusion model as proposed in previous works [9,11,14] to generate heatmaps.
Specifically, for the discrete diffusion model, we preserve the predicted probability of each variable being
one (i.e., x0 = 1) as the heatmap score. In this way, each value in the heatmap reflects the model’s belief that
the variable is 1. For the continuous diffusion model, we remove the final quantization step and instead use
0.5(x̂0 + 1) as the heatmap score. This transformation maps the continuous variables to the [0, 1] range,
representing the confidence for each variable. In this manner, the generated heatmap not only retains the
confidence information for each predicted variable but also provides greater flexibility and diversity for
the subsequent decoding process, aiding in more effective conflict resolution and optimization of the final
solution. For the heatmap A, the element Aij represents the confidence of edge (i, j). We adopt a greedy
decoding strategy.

3.2 Methodology: Noise Scheduling with GNN for TSP
3.2.1 The Necessity of Instance-Specific Noise Scheduling

In diffusion models, noise scheduling plays a crucial role in determining how noise is progressively
added to the data. Previous studies [14] have typically employed fixed noise scheduling methods, such as
linear increase or cosine annealing. However, these methods overlook significant differences in the com-
plexity, sparsity, and local connectivity of various graph structures, which becomes particularly prominent
in large-scale TSP instances. On one hand, during the early stages of diffusion, critical edges (such as those
forming the shortest path) may lose their structural characteristics due to excessive perturbation, making it
difficult to accurately recover these key structures during the reverse denoising phase. On the other hand,
the uniform noise path fails to align with the specific structure of the graph, leading to redundant searches
and reduced efficiency. Moreover, the fixed noise intensity results in inconsistent learning difficulties across
different structural instances, which affects the stability of the training process.

As the problem scale increases, these shortcomings become more pronounced. In large-scale graph
problems, the performance of fixed noise scheduling typically deteriorates sharply. As the number of nodes
n increases, the size of the adjacency matrix grows at a rate of O (n2), which not only exacerbates the issue
of excessive perturbation in sparse regions but also leads to insufficient exploration in dense areas. This
phenomenon is particularly evident in large-scale TSP instances, where the graph’s topological complexity
and the combinatorial optimization difficulty increase exponentially, making traditional noise scheduling
mechanisms ill-suited to handle such high-dimensional and heterogeneous structural characteristics.

To address these challenges, the GGDS introduces a graph-guided noise scheduling mechanism. This
mechanism leverages GNNs to extract key features from the graph structure and dynamically generate
perturbation intensities tailored to each instance, thus enabling the customization of the forward diffusion
path. Specifically, at each time step, the GNN aggregates local information based on node features and
adjacency relationships, identifying edges that have a significant impact on solution quality (such as local
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shortest edges or bridge edges). These critical structures are then subjected to smaller perturbation intensities
to slow down the degradation of their information. From an information-theoretic perspective, the graph-
guided noise scheduling can be viewed as adaptively controlling the conditional mutual information
I (x0; xt ∣G), such that the amount of original information retained at each time step is no longer fixed but
is dynamically adjusted based on the complexity of the graph structure. This enhances the model’s ability to
recover from complex structures and improves the quality of the generated solutions.

Furthermore, GGDS employs an Anisotropic Graph Neural Network (AGNN) along with a gating
mechanism to achieve lightweight message passing. This reduces computational overhead while enabling
the flexible allocation of perturbation magnitudes based on the graph structure. This structural-awareness
capability allows the model to maintain high adaptability and scalability, even in large-scale graph scenarios,
significantly improving the practical utility and stability of the diffusion model in large-scale combinatorial
optimization problems.

Previous research [20] has shown that introducing learnable noise scheduling strategies in general
diffusion models can significantly enhance model performance. Specifically, researchers have successfully
minimized the variance of the Variational Lower Bound (VLB) estimator by optimizing the noise schedule,
thereby improving the stability and efficiency of the training process. Further analysis reveals that optimizing
the noise schedule not only does not alter the distribution of the generated data but also enhances the model’s
adaptability, improving both the quality of generation and the stability of the training process. The graph-
guided noise scheduling mechanism in GGDS is a specific implementation and extension of this approach,
applied to graph-structured problems.

3.2.2 Noise Scheduling with GNN
Inspired by [20,41,42], we propose an improvement to the traditional fixed noise schedule by intro-

ducing a new noise scheduling method. Building on cosine or linear-based noise schedules for generating
diffusion time-step noise levels, we incorporate noise levels that include graph structural information.
By using a gated mechanism in a GNN, we are able to capture the graph structural information of the
current problem instance and its global features. The gated mechanism in the GNN controls the flow of
information, emphasizing important nodes and edges while suppressing less critical information. By using
global features to determine the noise levels, the noise schedule is aligned with the essential characteristics
of the graph structure. This complexity may require different noise levels to adapt accordingly. In various
graph structures, the importance of nodes and edges may differ, and therefore the feature matrix output by
the gated mechanism will also vary. Finally, the obtained feature matrix is converted into the corresponding
noise levels, which are then combined with the noise levels generated by the time steps to form the final
noise schedule.
GNN for Generating Graph Structure Noise

In previous works [14,20], it has been demonstrated that AGNN with gating mechanisms are effective
in solving problems involving complex relationships between nodes, such as the TSP. Therefore, this paper
adopts a similar AGNN architecture with a gating mechanism, as in prior work. In particular, the edge gating
mechanism enables the model to dynamically modify the importance of edges, which is especially important
for the TSP, where certain paths may hold greater significance than others. Through the gating mechanism,
the model can focus on edges that contribute more significantly to finding shorter paths. Moreover, AGNN
can more effectively learn the topological structure of the graph by distinguishing between node and edge
features. This is advantageous for the TSP, as the model needs to identify which node pairs (cities) and edges
(paths) are optimal.
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Formally, let hl
i and e l

i j represent the features of node i and edge (i , j) at layer l for node and edge
characteristics, respectively. The features at the next layer are updated using the anisotropic message passing
scheme, as shown in the following equations:

hl+1
i = hl

i + α (BN (U l hl
i + A j∈ℵi (σ (e l

i j) ⊙ V l hl
j))) (9)

e l+1
i j = e l

i + α (BN (Pl e l
i j + Q l hl

i + Rl hl
j)) (10)

where U l , V l , Pl , Q l , and Rl ∈ Rd×d are learnable parameters, α represents the ReLU activation function,
σ represents the Sigmoid activation function, BN denotes batch normalization, and A is the aggregation
and pooling function. ℵi denotes the neighborhood of node i, and the symbol ⊙ represents the Hadamard
product. Initially, the node features h0

i and edge features e0
i j are initialized as embeddings. In the experiments

of this study, a 12-layer AGNN with a width of 32 is used.
By processing the input initial node feature matrix and adjacency matrix, the resulting edge feature

matrix Ê and node feature matrix Ĥ contain rich information about the nodes and edges, including the
local neighborhood structure of nodes, relationships between nodes, and potential higher-order interaction
effects. The edge feature matrix Ê not only contains rich local structural information but also captures
global graph features through multi-layer aggregation operations. Based on this, we extract and reduce the
dimensionality of the information contained in Ê, obtaining the corresponding Êex trac t , which compresses
the high-dimensional graph structure information into a lower-dimensional space. The corresponding graph
structure noise βgra ph is then obtained as follows:

βgra ph = σ (Mean (Êex trac t)) (11)

where σ represents the Sigmoid activation function and Mean denotes the mean operation. This approach
not only enhances the diffusion model’s understanding of the graph structure [7] but also improves its
adaptability and flexibility in solving complex CO problems.
Generating Timestep Noise

We build upon previous work [14] and employ two noise scheduling methods to represent the noise
level βtime at each timestep t in the diffusion model: cosine-based noise scheduling and Neural Network
based (NN-based) noise scheduling. In the cosine-based noise scheduling, βcos

t ime is computed using a cosine
function with a predefined offset. For the NN-based noise scheduling, βnn

time is calculated by a monotonic
three-layer NN to determine the corresponding noise level at each timestep. In this work, we learn this NN-
based noise scheduling using the following parameterization approach:

γη(t) = l1 (t) + l3(ϕ (l2 (l1 (t))) (12)
βnn

time = σ (γη (t)) (13)

where γη(t) represents a monotonic NN with parameter η, σ represents the Sigmoid activation func-
tion, consisting of three linear layers with positive weights, with monotonicity constraints enforced
through Eq. (12).

Furthermore, we combine the graph-based noise level βgra ph with the time-dependent noise level βtime
to form the final noise level βt :

βt =W 1βgra ph +W2βtime (14)

where W 1, W2 respectively denote the weights assigned to βgra ph and βtime in computing the final noise
level. In our experiments, we set W 1 = 0.09 and W2 = 0.9. The term βtime can be instantiated as either βcos

t ime
or βnn

time . We evaluate several versions of GGDS with different noise scheduling strategies:
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GGDS (Cos_combine). The use of cosine annealing noise schedule combined with graph structure
information to jointly generate the final noise schedule.

GGDS (NN). The use of an NN-based noise schedule without incorporating graph structure informa-
tion.

GGDS (NN_combine). The use of an NN-based noise schedule combined with graph structure
information to jointly generate the final noise schedule.

The overall architecture of GGDS is illustrated in Fig. 1. In this instance graph, nodes represent cities
and edges represent the connections between them. The instance is input into an AGNN with a gating
mechanism, where the feature representations of nodes and edges are iteratively updated through multi-layer
message passing, progressively capturing higher-order structural information.

Figure 1: Architecture of the graph-guided noise scheduler in GGDS. Node and edge features of the input instance
are processed by an AGNN to yield the enriched edge matrix Ê, from which βgra ph is extracted via mean-pooling and
sigmoid activation. A timestep scheduler (cosine or NN-based) provides βtime , and the two components are linearly
fused with weights W 1 and W2 to produce the dynamic noise intensity βt that drives both the forward noising and
reverse denoising processes of the diffusion solver

Subsequently, a global structural representation is extracted from the edge feature matrix output by the
final layer. After applying mean pooling and a Sigmoid activation function, the noise intensity parameter
βgra ph , which is associated with the graph structure, is generated.

In parallel, the model adopts a predefined noise scheduling strategy along the time dimension (such
as cosine annealing or a neural network parameterized approach) to generate time-step-dependent noise
intensity βtime . The final noise level βt at each diffusion timestep is obtained by fusing the graph-based
and timestep-based components as defined in Eq. (14), which dynamically regulates the noise injection
throughout the denoising process.

In both continuous and discrete diffusion models, during the forward noise process, data is progressively
noised by polynomial noise until, at the final time step T, the original structure of the data is almost entirely
replaced by noise. At this point, the data xT converges to either a normal or uniform distribution, depending
on the type of diffusion model used. To ensure that the data follows the expected noise distribution during
this process, we design a prior loss Lprior based on standard techniques [40]:
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Lpr ior (x) = Eq( xT ∣x0) [DKL (q (xT ∣ x0) ∥Nt)] (15)

where Nt represents the target noise distribution at time step t, which may be either normal or uniform,
depending on the chosen diffusion model. With respect to the reconstruction loss mentioned above, the final
total loss to be optimized is expressed as:

Ltotal = Lreconstruc t ion + Lpr ior (x) = E [− log pθ (x0)] + Lpr ior (x)
≤ Eq( x1∶T ∣x0)[∑

t>1
DKL(q (xt−1∣ xt , x0) ∣∣pθ (xt−1∣ xt)) − log pθ (x0∣ x1)]

+ Eq( xT ∣x0) [DKL (q (xT ∣ x0) ∥Nt)] + C (16)

where C denotes a constant.

4 Experimental Results
All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU. The proposed method was

implemented in PyCharm using Python 3.7, with PyTorch 1.11.0 + cu113 as the deep-learning framework. We
evaluated our approach on 2D Euclidean TSP instances generated by uniformly sampling node coordinates
in the unit square.

4.1 Experimental Settings
We conducted experiments on problems of varying scales, including TSP-50, TSP-100, and TSP-500.

The reference solutions for the training instances of TSP-50 and TSP-100 were provided by Concorde [43],
while the training instances for TSP-500 were generated and labeled using the LKH-3 heuristic solver [44].
The test sets for TSP-50 and TSP-100 are sourced from [7,9], containing a total of 1500 instances, while the
test set for TSP-500 consists of 128 instances. Following previous work [7,9,38], we measure the differences
between models using the following metrics: (1) average path length: the average length of the predicted
paths for each instance in the test set (unitless, as coordinates are normalized to the unit square). (2) average
performance gap: the average relative performance degradation compared to the benchmark methods (such
as Concorde/LKH). (3) average computation time: the average time required to solve each instance in the
test set. The comparison includes methods such as AM [7], GCN [9], POMO [22], and DIFUSCO [14],
which are among the leading approaches in recent benchmark studies. Additionally, classical heuristic and
exact baselines are incorporated for comprehensive evaluation: Concorde [43] and Gurobi [45] serve as exact
solvers, LKH-3 [44] as a high-performance heuristic, and Farthest Insertion and 2-OPT [46] as traditional
construction and improvement heuristics, respectively. These classical methods provide essential references
for assessing both solution quality and computational efficiency across different problem scales.

In all experiments, the denoising step of GGDS is set to T = 1000. Except for the cosine noise schedule
and the NN-based noise schedule, we use the combined noise schedule method to set βt (t = 1 to T). The
decoding scheme follows previous work [14], with the default decoding strategy being greedy decoding
combined with the 2OPT [46] method.

4.2 Main Results
4.2.1 Results for TSP-500

In the experimental results of the discrete GGDS on TSP-500, we compare it with other models as
shown in Table 1. In this scale of experiments, the decoding strategies include greedy decoding and sampling
decoding (×4), where sampling decoding refers to generating multiple solutions in parallel and selecting
the best one. We compare DIFUSCO and GGDS under the same conditions. It is important to note that,
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except for DIFUSCO and the proposed GGDS variants, the performance data for other baselines (e.g., AM,
GCN, POMO) are directly referenced from [11,26]. However, the reported Time values for these models were
not measured under the unified hardware environment used in this study. Therefore, these values should be
regarded as rough references rather than strict cross-method comparisons.

Table 1: Results on TSP-500

Algorithm Type TSP-500

Length Gap Time (s)
Concorde [43] Exact 16.55 0.00% 17.65

Gurobi [45] Exact 16.55 0.00% 1282.5
LKH-3 [44] Heuristics 16.55 0.00% 21.69

Farthest Insertion Heuristics 18.30 10.57% 0
AM [7] RL+Grdy 20.02 20.97% 0.71

GCN [9] SL+Grdy 29.72 79.58% 3.13
POMO+EAS-Emb [22] RL+AS+Grdy 19.24 16.25% 360
POMO+EAS-Tab [22] RL+AS+Grdy 24.54 48.28% 326.5

DIFUSCO [14] SL+Grdy 18.06 9.15% 7.5
GGDS(Cos_combine) SL+Grdy 18.06 9.10% 7.39

GGDS(NN) SL+Grdy 18.06 9.35% 7.35
GGDS(NN_combine) SL+Grdy 18.01 8.82% 7.35

DIFUSCO [14] SL+Grdy+2OPT 16.81 1.57% 8.34
GGDS(Cos_combine) SL+Grdy+2OPT 16.79 1.45% 7.46

GGDS(NN) SL+Grdy+2OPT 16.81 1.58% 7.87
GGDS(NN_combine) SL+Grdy+2OPT 16.81 1.62% 7.46

AM [7] RL+BS 19.53 18.0% 10.31
GCN [9] SL+BS 30.37 83.50% 17.82

DIFUSCO [14] SL+S 17.52 5.86% 28.5
GGDS(Cos_combine) SL+S 17.45 5.42% 28.8

GGDS(NN) SL+S 17.52 5.88% 28.5
GGDS(NN_combine) SL+S 17.47 5.54% 29

DIFUSCO [14] SL+S+2OPT 16.70 0.91% 30
GGDS(Cos_combine) SL+S+2OPT 16.69 0.83% 29

GGDS(NN) SL+S+2OPT 16.67 0.74% 29.3
GGDS(NN_combine) SL+S+2OPT 16.67 0.74% 28.5

Note: This table reports the performance of various algorithms, including Reinforcement Learning (RL),
Supervised Learning (SL), Greedy Decoding (Grdy), Active Search (AS), Sampling Decoding (S), and Beam
Search (BS). It also presents results for the cosine noise schedule combined with graph structural information
(Cos-combine) and the neural network-based noise schedule combined with graph structural information
(NN-combine). The proposed GGDS method is compared with DIFUSCO under identical experimental
settings, while other baseline results are cited from previous studies [11,26]. For all metrics, lower values
indicate better performance: average path length (Length) measures the tour length, average performance
gap (Gap) denotes the relative deviation from the baseline, and average computation time (Time) reflects
the efficiency of each method.
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First, in terms of solution quality (Gap), the GGDS method consistently outperforms the existing
DIFUSCO [14] approach across multiple settings. Specifically, under the Sampling Decoding+ 2OPT config-
uration, GGDS (NN_combine) and GGDS (Cos_combine) reduce the optimality gap from DIFUSCO [14]
0.91% to 0.74%, corresponding to an 18.7% reduction in the original gap of 0.91%. This demonstrates that
incorporating graph structure information to dynamically adjust noise levels can effectively enhance the
search ability of diffusion models on complex instances, thereby generating solutions closer to the optimal.

Second, regarding computational efficiency (Time), the GGDS method achieves performance improve-
ments without significant overhead. For instance, under the Sampling Decoding + 2OPT setting, GGDS
(Cos_combine) requires an average of 29 s, comparable to DIFUSCO [14] 30 s, and even slightly faster in some
configurations (e.g., 28.5 s for GGDS (NN_combine)). This indicates that the proposed graph-guided noise
scheduling mechanism improves model performance while maintaining high efficiency, making it practical
for solving medium-scale problems.

In the greedy decoding mode, the GGDS method also shows a certain degree of competitiveness.
Although its solution quality is slightly inferior to that achieved by the sampling decoding strategy, it offers
a significant advantage in runtime (approximately 7.3–7.5 s), making it more suitable for scenarios where
solution speed is critical. Notably, GGDS (NN_combine) achieves a Gap of 8.82% under greedy decoding,
outperforming DIFUSCO [14] with 9.15%, with nearly identical computation times. This further validates
the effectiveness of incorporating graph structure information in lightweight decoding strategies.

In summary, the GGDS method achieves dual improvements in both solution quality and computa-
tional efficiency on TSP-500, particularly under the Sampling Decoding + 2OPT configuration, where it
demonstrates superior overall performance compared to existing diffusion-based models. The proposed
graph-guided noise scheduling mechanism not only improves solution quality but also maintains high
efficiency, highlighting its potential and practical value in solving large-scale combinatorial optimization
problems. Based on the experimental results of TSP-500, GGDS not only maintains the original solving time
but also improves solution quality, validating its applicability in large-scale scenarios.

4.2.2 Results for TSP-50/100
Table 2 compares the performance of the discrete GGDS with other models on the TSP-50 and TSP-100

instances. As shown in previous work [14], DIFUSCO has demonstrated that a sampling decoding strategy
achieves excellent results on TSP-50 and TSP-100 instances. However, it is important to note that TSP-50
and TSP-100 are small-scale problems, and their runtime is typically very short (usually in the millisecond
range). Therefore, time differences between methods at these scales are not significant. For this reason, we
report runtime only for the TSP-500 experiments to reflect the trade-off between efficiency and accuracy.
For TSP-50/100, the focus is on solution quality, consistent with previous works like DIFUSCO [14].

Table 2 shows that although the improvement of GGDS on TSP-50 and TSP-100 is smaller com-
pared to TSP-500, it still follows a consistent trend. On TSP-50, GGDS(Cos_combine) with SL+Grdy
decoding reduces the gap from 0.97% (DIFUSCO [14]) to 0.60%, a 38% reduction. With SL+Grdy+2OPT,
the gap narrows further to 0.11%, which is only 23% of the 0.47% gap from DIFUSCO [14]. For TSP-
100, GGDS(Cos_combine) under SL+Grdy achieves a gap of 1.29%, slightly higher than the 1.24% from
DIFUSCO [14]. However, with SL+Grdy+2OPT, both GGDS(Cos_combine) and GGDS(NN_combine)
converge to 0.30%, which is lower than the 0.32% of DIFUSCO [14], maintaining a slight advantage. Notably,
the NN-based noise schedule performs slightly worse than the Cosine noise schedule when the graph
structure is not incorporated, suggesting that the cosine-based graph fusion strategy is more robust than the
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pure NN-based scheduling in small-scale scenarios. Overall, GGDS shows consistent improvements on TSP-
50/100, with results that are “no worse than, and occasionally outperforming” the comparison methods, and
its trend aligns with that of TSP-500, verifying the generalization capability of graph-guided noise scheduling
across different problem scales.

Table 2: Results on TSP-50 and TSP-100

Algorithm Type TSP-50 TSP-100

Length Gap Length Gap
Concorde [43] Exact 5.69 0.00% 7.76 0.00%

2OPT [46] Heuristics 5.86 2.99% 8.03 3.48%
Farthest Insertion Heuristics 6.12 7.56% 8.72 12.4%

AM [7] RL+Grdy 5.80 1.93% 8.12 4.64%
GCN [9] SL+Grdy 5.87 3.16% 8.41 8.38%

POMO [22] RL+Grdy 5.73 0.70% 7.84 1.03%
DIFUSCO [14] SL+Grdy 5.74 0.97% 7.86 1.24%

GGDS (Cos_combine) SL+Grdy 5.72 0.60% 7.86 1.29%
GGDS (NN) SL+Grdy 5.73 0.74% 7.85 1.16%

GGDS (NN_combine) SL+Grdy 5.75 1.05% 7.85 1.15%
AM [7] RL+Grdy+2OPT 5.77 1.41% 8.02 3.35%

GCN [9] SL+Grdy+2OPT 5.70 0.18% 7.81 0.64%
POMO [22] RL+Grdy+2OPT 5.73 0.70% 7.82 0.77%

DIFUSCO [14] SL+Grdy+2OPT 5.71 0.47% 7.78 0.32%
GGDS (Cos_combine) SL+Grdy+2OPT 5.69 0.11% 7.78 0.30%

GGDS (NN) SL+Grdy+2OPT 5.70 0.22% 7.78 0.32%
GGDS (NN_combine) SL+Grdy+2OPT 5.70 0.19% 7.78 0.30%

Note: This table presents the performance of various algorithms on smaller-scale TSP
instances (TSP-50 and TSP-100), including methods based on reinforcement learning
(RL), supervised learning (SL), and greedy decoding (Grdy). Results for the cosine
noise schedule combined with graph structural information (Cos-combine) and the
neural network-based noise schedule combined with graph structural information (NN-
combine) are also included. The proposed GGDS method is compared with DIFUSCO
under identical experimental settings, while other baseline results are cited from previous
studies [11,26]. For all metrics, lower values indicate better performance: average path
length (Length) represents the tour length, average performance gap (Gap) denotes the
relative deviation from the baseline. Since the runtime for TSP-50 and TSP-100 is typically
very short (in the millisecond range), time data is not provided, with the focus instead on
solution quality.

4.3 Analysis of Algorithm Performance, Weight Sensitivity, and Efficiency
4.3.1 Sensitivity Analysis of W 1 and W2 in Noise Scheduling

In this section, we investigate the sensitivity of the proposed GGDS to the weighting coefficients W 1

and W2, which control the contribution of βgra ph and βtime in the final noise schedule βt (see Eq. (14)).
These two hyperparameters are critical as they directly influence the balance between structure-aware and
temporally smooth noise injection during the diffusion process.
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We conduct a grid search over different combinations of W 1 and W2 under the constraint
W 1 +W2 < 1 and W 1 +W2 → 1. All experiments are conducted on the TSP-50 dataset using the SL
+ Grdy + 2OPT decoding pipeline, following the same training and inference protocol as described
in Section 4.1. The denoising step is fixed at T = 1000, and all other architectural hyperparameters (e.g.,
AGNN depth = 12, width = 32) are inherited from DIFUSCO [14] without modification, ensuring a fair and
controlled comparison.

As shown in Fig. 2, GGDS achieves the lowest average optimality gap of 0.11% when W 1 = 0.09 and
W2 = 0.9. This configuration allows the model to retain sufficient graph structural awareness while benefiting
from the smoothness of the cosine-based temporal schedule. When W 1 = 0 (i.e., no graph guidance), the
gap increases to 0.47%, confirming the necessity of incorporating graph structure into the noise schedule.
Conversely, excessively high W 1 (e.g., 0.5) leads to overfitting to local structure and degraded generalization,
as evidenced by the rising gap.

Figure 2: Sensitivity of GGDS optimality gap to graph-structure noise weight W 1 on TSP-50. Horizontal axis: W 1 ∈
[0, 1], controls the relative weight of graph-structure noise; Vertical axis: average gap (%), measures deviation from
the optimal tour length. The minimum gap occurs at W 1 = 0.09, indicating a balanced injection of graph-aware and
temporal noise. Values of W 1 > 0.3 lead to noticeable degradation, confirming that excessive graph-weighting biases
the model toward local structure, diminishing solution quality

Notably, the runtime remains stable across all configurations, indicating that the introduction of
graph-structure noise adjustment adds negligible computational overhead, consistent with our observations
in Section 4.2.

In summary, the weight pair (W 1, W2) = (0.09, 0.9) is selected as the default configuration for all
subsequent experiments, as it offers the best trade-off between solution quality and efficiency. Unless
otherwise specified, this setting is used throughout the paper.

4.3.2 Noise Schedule Effects
Fig. 3 shows the variation in the noise schedule across diffusion timesteps after incorporating instance

graph information. The experiments were conducted on TSP-50, with two different noise schedule settings
for the diffusion timesteps: cosine annealing noise schedule and NN-based noise schedule. As shown
in Fig. 3, after integrating instance graph information, the noise level curve βt becomes smoother. This
change suggests that the noise schedule, when combined with graph structure information, effectively adjusts
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the model’s exploration behavior during the diffusion process, leading to improved performance in solving
the TSP problem.

Figure 3: Dynamic variation of noise level βt with diffusion timestep t on TSP-50, Horizontal axis: diffusion timestep
t ∈ [0, 100]; Vertical axis: noise intensity βt ∈ [0, 1]. The solid blue line denotes the standard cosine-annealing schedule,
the dashed orange line the purely timestep-based NN schedule, and the solid green and dashed red lines their respective
variants fused with graph-structural information. Guided by the graph, the βt trajectory becomes markedly smoother

4.3.3 Evaluation of Algorithm Efficiency
In the diffusion phase, the model employs a 12-layer, 32-width AGNN as the denoising network. The

computational cost of a single forward pass is proportional to the number of edges ∣E∣ in the graph. Therefore,
the total inference time for T diffusion steps is primarily dependent on the number of nodes ∣V ∣ and the
number of diffusion steps T . The computation of graph structure noise, βgra ph , is performed through an
additional forward pass, contributing negligibly to the overall computation time.

In the decoding phase, GGDS defaults to using a greedy algorithm combined with 2-OPT local search.
According to the data in Table 1, for the TSP-500, the average time for GGDS from diffusion step T = 1000
to full decoding is 28.5–29 s, which is comparable to DIFUSCO [14] with a runtime of 30 s. When only the
greedy algorithm is used, the runtime drops to 7.3–7.5 s, highlighting the dominant role of diffusion steps in
the overall runtime.

In summary, the runtime of GGDS increases approximately linearly with the number of nodes and
diffusion steps T . The number of samples introduces a one-time parallelizable overhead. The additional
computational cost introduced by the graph-guided noise accounts for less than 3% of the total computation,
demonstrating that GGDS has scalability and real-time performance for large-scale problems.

5 Conclusion and Future Work
In this study, we introduce an enhanced method, GGDS, to optimize existing graph-based diffusion

models, thereby improving the solution accuracy for the TSP in CO problems. The key innovation lies in
the integration of instance graph structure information when generating noise levels. Experimental results
demonstrate that this improvement significantly boosts the quality of solutions for TSP problems, reducing
the average optimality gap by 18.7% on TSP-500, 6.3% on TSP-100, and 88.7% on TSP-50 compared with
the previous best results. We also compare two approaches for generating noise levels across timesteps: one
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based on cosine annealing and the other using a NN. The performance of these methods varies depending
on the problem scale.

However, while GGDS achieves notable improvements in solution quality for TSP instances, it also
faces certain limitations. Although experimental results suggest that the integration of GNNs for dynamic
noise scheduling does not introduce significant additional overhead in medium-scale problems like TSP-500,
the inherent complexity of GNN-based adaptive mechanisms inevitably increases computational demands,
particularly as problem scales grow. This may still constrain the practical applicability of GGDS to very large-
scale instances without further architectural or algorithmic optimization. Moreover, the current reliance on
empirical weight tuning for graph-structure noise and the necessity of post-processing techniques like 2OPT
to ensure solution feasibility highlight areas where the method could be further refined. Addressing these
issues through more efficient architectures and integrated constraint handling will be crucial for extending
the method’s utility to broader and larger problem contexts.
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