Com.puters, Materials & <Térch Science Press
Continua

Doi:10.32604/cmc.2025.071251

ARTICLE Check for

updates

Action Recognition via Shallow CNNs on Intelligently Selected Motion Data

Jalees Ur Rahman'©®, Muhammad Hanif', Usman Haider”", Saeed Mian Qaisar” ©® and
Sarra Ayouni'

"Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460,
Pakistan

2Depar‘[men‘[of Al and DS, FAST School of Computering, National University of Computer and Emerging Sciences, Islamabad,
44000, Pakistan

3College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait

*Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia

*Corresponding Authors: Usman Haider. Email: usman.haider@isb.nu.edu.pk; Saeed Mian Qaisar. Email: saeed.qaisar@aum.edu.kw

Received: 03 August 2025; Accepted: 13 November 2025; Published: 12 January 2026

ABSTRACT: Deep neural networks have achieved excellent classification results on several computer vision bench-
marks. This has led to the popularity of machine learning as a service, where trained algorithms are hosted on the cloud
and inference can be obtained on real-world data. In most applications, it is important to compress the vision data
due to the enormous bandwidth and memory requirements. Video codecs exploit spatial and temporal correlations
to achieve high compression ratios, but they are computationally expensive. This work computes the motion fields
between consecutive frames to facilitate the efficient classification of videos. However, contrary to the normal practice
of reconstructing the full-resolution frames through motion compensation, this work proposes to infer the class label
from the block-based computed motion fields directly. Motion fields are a richer and more complex representation of
motion vectors, where each motion vector carries the magnitude and direction information. This approach has two
advantages: the cost of motion compensation and video decoding is avoided, and the dimensions of the input signal are
highly reduced. This results in a shallower network for classification. The neural network can be trained using motion
vectors in two ways: complex representations and magnitude-direction pairs. The proposed work trains a convolutional
neural network on the direction and magnitude tensors of the motion fields. Our experimental results show 20 x
faster convergence during training, reduced overfitting, and accelerated inference on a hand gesture recognition dataset
compared to full-resolution and downsampled frames. We validate the proposed methodology on the HGds dataset,
achieving a testing accuracy of 99.21%, on the HMDB51 dataset, achieving 82.54% accuracy, and on the UCF101 dataset,
achieving 97.13% accuracy, outperforming state-of-the-art methods in computational efficiency.

KEYWORDS: Action recognition; block matching algorithm; convolutional neural network; deep learning; data
compression; motion fields; optimization; videos classification

1 Introduction

The performance of deep neural networks has recently improved due to the vast amount of labeled
data, novel deep architectures, and the availability of inexpensive parallel computing. These algorithms are
now used in every industry, from object detection [1] to action recognition [2] and image classification [3],
among others. The discriminative power of deep neural networks is attributed to increasing depth and
higher representational capacity. However, this increases the cost of inference. Assume that a user has to

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.071251
https://www.techscience.com/doi/10.32604/cmc.2025.071251
https://orcid.org/0009-0003-6784-4195
https://orcid.org/0000-0002-4268-3482
mailto:usman.haider@isb.nu.edu.pk
mailto:saeed.qaisar@aum.edu.kw

2 Comput Mater Contin. 2026;86(3):96

classify a video stream recorded at 30 frames per second (fps) with a resolution of W x H x C =512 x
512 x 3, where W represents the width, H represents the height, and C represents the color channels.
Assuming each pixel is stored in 24-bit format, a one-second video consumes approximately 22 megabytes
(MB) in its raw form. This indicates that video storage consumes a substantial amount of memory, and
faster transmission requires dedicated bandwidth on high-speed channels. In this work, the resolution
of a block is given by bH x bW representing the block height and width, respectively, this classification
problem can be formulated as approximating the unknown function y = f(X">*H), where the class label
y is computed based on the input vector X"*¥. As the motion fields are calculated in a block-wise
fashion and (bH, bW) > 1, a compressed representation is obtained for each video frame, and the function
approximation is reduced to y = f(X(W*H/(bHx6W)) “This dimensionality reduction improves the model’s
computational speed, predictability, and generalization. Furthermore, conventional approaches utilize the
estimated motion vectors to reconstruct the original frames via motion compensation at the receiver end.

However, this work proposes computing the training and inference of a deep learning algorithm on
motion fields instead of full-resolution frames and reconstructed pixel representations. Therefore, the cost
of video reconstruction via motion compensation is avoided, and other benefits, such as faster training,
reduced overfitting, and accelerated inference, are also obtained. Fig. | shows the motion fields computed
for consecutive frames for the same video stream. It can be observed that highly correlated frames contain
redundant information, which may not be necessary for classification.

20 40 60

(a) Framel, Quiver Plot, Frame2

\\

200 N~ == .

0 N .
0 20 40 60

(b) Framel, Quiver Plot, Framel5

Figure 1: The foreman video stream and the corresponding motion vectors computed with block matching algorithms.
It can be observed that a high degree of temporal correlation exists between frames 1 and 2 compared to frames
land 15

In this work, a Convolutional Neural Network (CNN) is utilized to predict the class label of the video
stream. Conventionally, a CNN classifies an image based on the intensity level of each pixel. However,
motion vectors have a complex representation in the form of v = a + bi. The magnitude and direction of
v are computed using |v| = Va2 + b% and 6 = tan~'(b/a), respectively. The proposed work computes the
magnitude-direction maps from the computed motion fields and vectors. Compared to intensity-based pixel
representation, this doubles the number of channels at the input layer. However, the motion estimation
between two consecutive frames is carried out block-wise with (bH, BW) > 1 rather than pixel-wise. The
dimensions of the input frame are reduced from y = f(X(W*) to y = f(X(WXH)/(bHxbW)),

Comput Mater Contin. 2026;86(3):96 3

1.1 Motivation

Despite the success of CNNs in video classification, their computational complexity often limits their
deployment on resource-constrained devices. Traditional methods rely on reconstructing full-resolution
frames, resulting in high bandwidth and storage costs. This work addresses these challenges by directly using
motion fields for classification, eliminating the need for pixel-based reconstructions.

1.2 Contributions

This research proposes an efficient gesture recognition method that uses sparse CNNs trained directly
in intelligently selected motion fields. The primary contributions of this work are summarized as follows.

o Proposed a preprocessing method based on motion fields computed using block matching algorithms,
significantly reducing input dimensionality and computational complexity.

o Developed a sparse CNN architecture specifically tailored for motion-field-based gesture recognition,
which achieves similar accuracy to traditional dense CNNs trained on full-resolution frames.

« Conducted comparative validation experiments against CNNs trained on full-resolution and randomly
downsampled frames, demonstrating that the proposed method achieves superior computational
efficiency without sacrificing accuracy.

o Evaluated and validated the effectiveness of the proposed approach using three recognized datasets,
ensuring robustness and general applicability of the methodology.

1.3 Paper Arrangement

The rest of the article is organized as follows. The related work is discussed in Section 2, followed
by Section 3.1, which explains the cost of inference with a CNN. Block matching algorithms and motion
field computations are discussed in Section 3.2. The proposed methodology is given in Section 3.3. The
experimental results and discussion are presented in Sections 4 and 5, respectively. Finally, in Section 6, the
article concludes by summarizing the key lessons learned and providing directions for future research.

2 Related Work

As discussed in Section 1, CNNs have achieved excellent classification performance in various
applications, including object detection, image classification, and semantic segmentation. However, their
computational complexity remains high, hindering their deployment for real-time applications, especially
on resource-limited devices. In the literature, researchers have proposed various ways to accelerate inference
with deep convolutional networks. These methods accelerate convolutions without significantly compromis-
ing network performance. These techniques include i. Factorization and Decomposition of convolutional
kernels [4,5], ii. pruning [6], iii. separable convolutions [7], and iv. quantization [8].

Reference [5] has proposed a simple two-step method to increase the speed of convolutional layers. This
method is based on tensor fine-tuning and decomposition. Nonlinear least squares are used for computing
the low-rank decomposition of the 4-dimensional kernel tensor. These 4D kernels are decomposed into
a smaller number of rank-one tensors. This research resulted in a significant reduction in inference time,
accompanied by a modest decline in accuracy. For an 8.5x CPU speedup, accuracy is reduced by only 1%,
i.e., from 91% to 90%. Other researchers have proposed separable convolutions [9,10]. The MobileNets paper
proposed the highly efficient CNN architecture called ShuffleNet [10]. It is specially designed for mobile
devices and requires a limited computing power of 10-15 MFLOPs. Reference [10] employed new operations,
including channel shuffle and pointwise group convolutions. ShuffleNet achieved a speedup of 13x over
AlexNet without compromising accuracy. They reduced the top-1 error to 7.8% in absolute terms compared

4 Comput Mater Contin. 2026;86(3):96

to [9] on the ImageNet classification problem. Computation power was limited to 40 MFLOPs. Another
similar model was introduced specially for mobile phones, and embedded systems [11], known as EffNet,
which performed better than the MobileNet and ShuffleNet architectures.

The Depth-wise separable convolutions followed by pointwise convolutions, called Xception [7]. This
architecture was inspired by the Inception model [12]. However, the Xception model replaced the Inception
module with depth-wise separable convolutions. Xception outperformed Inception V3 [4], for significant
image classification problems. The most modern architecture in Inception was proposed by [13], known
as ResNet.

Pruning is another promising technique to reduce redundancy in the model. Pruning induces sparsity
in the network data at various granularities: layer, feature maps, kernels, and intra-kernel. As selecting a
suitable pruning candidate is very important, several types of research have focused on acceleration. The
pruning technique in [14] reduced the network size. Image compression using distinctiveness units was
proposed by [15]. They kept the maximum functionality of the compression layer neurons based on their
distinctiveness, improving image compression. In another work, reference [6] proposed a data structure to
induce structured sparsity in network data.

In recent years, action recognition techniques have evolved toward using compressed video repre-
sentations and efficient temporal modeling, particularly on challenging datasets such as HMDB5I1. The
Temporal Segment Network (TSN) [16] employs a sparse temporal sampling strategy in conjunction with
a ConvNet-based architecture to facilitate efficient learning across entire video sequences, achieving an
accuracy of 69.4%. The Slow-I-Fast-P (SIFP) model [17] further advances compressed video processing
through a dual-pathway design: a slow path for sparsely sampled I-frames and a fast path for densely sampled
pseudo-optical flow, generated using an unsupervised loss-based method. This approach achieves 72.3%
accuracy on HMDB51 while reducing dependency on traditional optical flow methods. Additionally, recent
studies have explored deep learning architectures, such as 3D ResNet-50 and Vision Transformers (ViT),
combined with LSTM for activity recognition [18]. The 3D ResNet-50, pre-trained on large-scale datasets,
directly captures spatiotemporal features from video clips under supervised learning, achieving a validation
accuracy of 48.9%. In contrast, the ViT-LSTM model utilizes self-supervised DINO pretraining to encode
spatial features, followed by LSTM-based temporal modeling, which provides a semi-supervised alternative
and achieves an accuracy of 41.9%. While these approaches show promising results, they typically require
significant computational resources and longer inference times.

Another promising direction in recent research is the use of advanced deep learning models designed
specifically for efficient and accurate human action recognition. A Vision Transformer-based approach,
ViTHAR, has been proposed to address challenges such as occlusion, background clutter, and inter-class
similarity by modeling long-range spatial and temporal dependencies in video data [19]. This method was
evaluated on the UCF101 and HMDB51 datasets, achieving recognition accuracies of 96.53% and 79.45%,
respectively, and outperforming several prior deep learning baselines. In parallel, spiking neural networks
have been explored for their ability to deliver ultralow-latency inference. A scalable dual threshold mapping
(SDM) framework has been introduced to convert conventional artificial neural networks into spiking neural
networks while retaining competitive accuracy [20]. This approach achieved 92.94% top-1 accuracy on
UCFI101 and 67.71% on HMDBS5I using only four inference steps, thus significantly reducing latency and
energy consumption.

Furthermore, convolutional neural network variants have also been optimized for real-time action
recognition. A residual R(2+1)D CNN model has been developed, which factorizes 3D convolutions into
separate spatial and temporal components, reducing computational complexity without sacrificing perfor-
mance [21]. When tested on the UCF101 dataset, this method achieved an accuracy of 82%, demonstrating

Comput Mater Contin. 2026;86(3):96 5

a balance between efficiency and accuracy suitable for practical deployment. Together, these approaches
highlight how transformer-based models, biologically inspired spiking architectures, and optimized CNN
variants contribute to advancing the field of human action recognition on standard benchmarks.

Additionally, motion-based representations have gained attention for their ability to capture temporal
dynamics with lower computational overhead directly. Prior studies have shown that motion fields offer
a more direct and efficient alternative to traditional optical flow or motion vectors [22,23]. These works
demonstrate that modeling the direction and magnitude of motion can effectively capture human movement
patterns. To further incorporate temporal modeling, hybrid architectures have been proposed, such as the
one in [24], which combines a deep residual network for spatial feature extraction with a residual structured
Recurrent Neural Network (RNN) for temporal sequence modeling. This design significantly improves
classification accuracy on the HMDB51 and Olympic Sports datasets, with pruning techniques applied to
manage overfitting caused by the network’s increased depth.

Another well-known method for image representation and activity recognition from videos is con-
trastive learning, which combines self-supervised and fully supervised learning. Due to the temporal nature
of videos, a novel temporal contrastive learning technique is proposed [25]. This method introduces two
loss methods that improve the classification performance of videos: local-local and global-local temporal
methods. Local-local contrastive loss addresses non-overlapping frames within a video. On the other hand,
global-local loss targets the discrimination between timesteps extracted from the feature maps of a video
clip, which increases the temporal diversity of the features learned. Their proposed contrastive method has
outperformed the state-of-the-art method, 3D ResNet-18. The model is trained and tested on a benchmarked
dataset, including UCF101 and HMDB51. UCF101 achieves a classification accuracy of 82.4%. At the same
time, the classification accuracy for the HMDB51 dataset is 53.9%.

Recently, Complex-Valued Neural Networks (CV-NNs) have gained popularity in deep learning
research [26]. Complex numbers have richer representations than real numbers. Due to the limited avail-
ability of complex, non-linear activation functions, this area requires further exploration. Recent studies
have extended the use of CVNNs to non-visual modalities, where complex-valued architectures have been
applied to human activity recognition from WiFi Channel State Information by combining CVNNs with
complex transformers [27]. The proposed work adheres to a straightforward philosophy. If complex tasks
can be learned from training data, then a real-valued network based on vector magnitude and direction
maps can also learn to solve classification problems. This results in efficient training and inference, mitigating
overfitting. However, to the best of our knowledge, no existing work has applied complex-valued CNNs or
ANN:Gs directly for video-based human activity recognition, which remains an open research direction.

3 Materials and Methods

This section outlines the approach used to address the video classification problem by leveraging CNNs
and motion fields. The overall methodology comprises three key steps: using full-resolution frames, motion
fields-based classification, and a random downsampling mechanism, as shown in Fig. 2.

First, CNNs are employed for efficient video sequence classification by processing either full-resolution
frames, downsampled frames, or motion fields extracted from the frames. To reduce computational com-
plexity without sacrificing accuracy, the study proposes using motion fields as input to the CNN, rather
than high-resolution images. Motion fields are computed using block-matching algorithms, providing both
magnitude and direction information for frame-to-frame motion.

Finally, various CNN architectures are explored, including networks designed for full-resolution, down-
sampled, and motion-field-based inputs. The details of each stage are described in the following subsections.

6 Comput Mater Contin. 2026;86(3):96

Input Videos
l Preprocessingl l
Frames Block Matching Frames
Extraction Algorithm Extraction

v v v

Frames Stacking Motion Fields of

based on Sliding consecutive Dovljr?ga?;mlin
Windows Frames piing
Direction and Frames Stacking
Magnitude based on Sliding
Pairing Windows

v

Pairs Stacking
based on Sliding

Windows
|
(N e D
Dense CNN Sparse CNN F
/
Videos

Classification

‘\\ . [) Model Training 4

v

Validation and Comparison

Figure 2: Overall system block diagram

3.1 Computations of CNNs

CNNs are a class of artificial neural networks explicitly designed for computer vision tasks. Their
computational complexity depends on several factors, including the number of hidden layers, feature maps,
convolution kernel sizes, and the size of weight matrices in fully connected layers. Consider two consecutive
layers with F; and F),, feature maps. Each feature map has dimensions H x W x F;. In this scenario, there
are F; x Fj,; convolution operations, where each kernel has a size of k x k. The kernel is flipped during
convolution and slides over the input image, calculating a dot product within overlapping receptive fields. The
number of multiply-and-accumulate (MAC) operations for one convolution is k x k x W x H. As a result,
the overall complexity for a convolutional layer is O(k x k x W x H x F; x F;,). This complexity increases
further with mini-batch training, becoming O(k x k x W x H x F; x Fj;; x B).

Reducing input frame dimensions can decrease computational complexity. Instead of random down-
sampling, which may lead to performance loss, this study proposes using Block Matching Algorithms
(BMAs) to compute motion fields. BMAs reduce input dimensions without significant data loss, thereby
accelerating inference [28-30].

Comput Mater Contin. 2026;86(3):96 7

In this work, the CNN is trained on motion fields instead of full-resolution and downsampled frames. By
using BMAs, the proposed method calculates magnitude and direction matrices from motion fields, thereby
reducing input frame dimensions and enhancing computational efficiency.

3.2 Motion Fields

Motion fields represent the displacement between two consecutive video frames. This displacement is
calculated based on pixel intensities and can be measured at various granularities, such as pixel or block level.
Since pixel-level motion estimation is computationally expensive, this work employs block-level motion
estimation with non-overlapping blocks.

Block-based motion estimation is performed using BMAs, which identify the movement of each block
between a pair of frames. Each frame is divided into fixed-size blocks (e.g., 7 x 7), and for every block in
the current frame, the algorithm searches for the most similar block within a defined search window in the
reference (anchor) frame.

The block size and search window size have a significant influence on motion field quality. Smaller
blocks produce denser motion fields with higher computational costs, while larger blocks generate less dense
but computationally efficient fields. A larger search window can yield more refined motion vectors, but also
increases computation time.

The process involves dividing frames into blocks, searching for the best match for each block in the
previous frame within a predefined search window, and encoding the horizontal and vertical displacements
as motion vectors. The aggregation of motion vectors constitutes the motion field for the frame pair. Fig. 3
illustrates this process [28]. Fig. 3 depicts the block matching process using an anchor and current frame,
where a block B,, is matched with the best candidate block B/, within the search region to compute the
displacement vector d,,,.

R,

Anchor frame "*----

B’

m
Best match

[R RS M S CAN G

SATqII TeEion]

-
B,

Current block

Figure 3: Estimating motion between consecutive frames using BMAs [28]

This study finds that dense motion fields are not always necessary for an accurate classification. Less
dense fields offer better generalization and reduce overfitting. The quality of motion fields is also influenced
by the block-matching criteria used during motion estimation. Common similarity metrics include the Sum
of Absolute Differences (SAD) and the Mean Squared Error (MSE), which compute the difference between
the corresponding pixel intensities in the current and reference blocks. Once the most similar block is
identified within the search window, the horizontal and vertical displacement between the current block and

8 Comput Mater Contin. 2026;86(3):96

the matched block is recorded as a motion vector.

N-1N-1
SAD(x,y) =Y. > (i, j) - L(i+x,j+y)], -s<x,y<s-1 (1)
i=0 j=0
1 N-1N-1)
MSE(x, y) = 2 Y3 Uchj)-L(i+x,j+y)", -s<x,y<s-1 (2)
i=0 j=0

Here, I.(i, j) and I, (i, j) represent the pixel intensities in the current and reference frames, respectively.
The search range, determined by s, identifies the block with the lowest SAD or MSE value as the optimal
match. Several block-matching algorithms, such as the Three-Step Search (TSS), Exhaustive Search (ES), and
Full Search (ES), are employed to enhance computational efficiency [29,30]. Motion fields generated using
TSS provided a good balance between performance and computational cost in our experiments.

3.3 Proposed Methodology for Video Classification

In this work, we exploit the motion fields to classify video sequences as an alternative to pixels in
the frame for the classification task. We perform this classification using conventional CNNs. We can
significantly reduce the computations required for inference by utilizing the motion fields for classification.
Furthermore, our experimental results demonstrate that employing motion fields enhances generalization
and mitigates network overfitting. Three different CNN architectures are explored to classify the video
sequences. These architectures perform classification based on the nature and size of the input. Each network
was explored using various sliding window lengths and different block sizes for downsampling frames
and motion field vectors, as full-resolution frames are independent of block sizes. Among the competing
networks, simpler networks with better generalization and faster convergence are reported. Further details
are provided in the next section.

3.3.1 CNN Employing Full-Resolution Frames

In the first scenario, frames from the video sequences are extracted and concatenated to form three-
dimensional (3D) arrays. For robust training, we propose using overlapping blocks and concatenating the
data in 3D arrays using sliding windows. Let H, W, and N represent the height, width, and number of frames,
respectively, in the video sequence and S,, represent the length of the sliding window, then the dimensions
of one single input unit to the network is H x W x §,, and N — §,, + 1 such 3D units can be formed from a
video sequence. For example, a video sequence having 50 frames of size 176 x 144 and a sliding window of
length 10 would constitute 41 3D input units of dimension 176 x 144 x 10. Such 3D input matrices are derived
from all the video sequences and are used to train and infer from the network. The CNN architecture used to
process the above-mentioned input is shown in Fig. 4. This network accepts a 10-channel input and consists
of 2 convolutional layers, each followed by a pooling layer. Each of the convolutional layers produces 20
feature maps and utilizes kernels of size 3 x 3. Rectified Linear Unit (ReLU) is employed as the activation
function. 2 x 2 max pooling is used with a stride of 2. Densely connected layers follow this structure, and the
SoftMax output layer is employed for classification.

Comput Mater Contin. 2026;86(3):96 9

Videos to
Sliding
Windows
) _ ReLU
@ O B0 m
=4 -

Max Pooling

2D Convo Layer Max Pooling

Sliding Windows Filter: 3% 3 L 2D Convo Layer Layer Fully Connected
Size 10 X3 ayet Filter: 3x 3 , Layer and
aps: 2 ize: 2x2
F.Maps: 20 Pool Size: 2X2 Fpfaps: 20 Po?l SIZe X SofiMax
Stride: 1 x1 Stride: 1x1

Figure 4: CNN architecture for classification based on the full-resolution frames

3.3.2 CNN Trained with Downsampled Frames

For our second scenario, we reduce the spatial resolution of the frames by downsampling them with
a factor of M. This downsampling can be performed by utilizing different pixel decimation patterns. In
this work, we employ two very simple sub-sampling patterns. For a fair comparison, we downsampled the
frames to match the dimensions of the motion fields constructed by the motion vectors. Hence, if the size
of blocks utilized for constructing the motion field was n x n. The sub-sampling is performed with the
same factor so that the dimensions of the full-resolution frames (H x W) are reduced to % X % The 3D
input matrices of these downsampled frames are constructed in the same way as described in Section 3.3.1.
Due to the lower dimensions of the input, this network comprises only one convolutional layer and one
pooling layer. The network accepts a 10-channel input but with reduced spatial dimensions. The remaining
attributes of the network are the same as those for the one with full-resolution input. As mentioned before, the
loss of information in the downsampled frames degrades the network performance. We, therefore, suggest
training a network where the input vector consists of motion fields with the same dimensions as discussed
in this section.

3.3.3 CNN Exploring Motion Field Extracted from the Frames

In this configuration, the use of motion fields for video classification is explored. Motion fields are
constructed by estimating motion for all blocks in a frame as defined in Section 3.2. As motion vectors are
calculated for blocks of size n x n, the spatial resolution of the input signal is reduced from H x W to % X
%. From this motion field, we extract two planes—one representing the magnitude of motion vectors and
the other representing direction information of the motion vectors. The magnitude plane is constructed by
taking the magnitude of the individual motion vectors as \/x2 + y? while the direction plane is constructed
as tan™! (x/y), where x and y represent the horizontal and vertical components of the motion vectors. To
use the information content of these planes, 3D input matrices are formed for the CNN model. Fig. 5 shows
a sample CNN network performing classification based on the magnitude and direction planes. The network
consists of a single convolutional layer followed by a max-pooling layer, a densely connected layer, and the
SoftMax layer. The other parameters are as described in Section 3.3.1. In the next section, experimental
evaluation establishes that the classification results obtained from the motion information yield comparable
classification results.

10 Comput Mater Contin. 2026;86(3):96

Direction
Magnitude
Videos to
Motion Fields s L 1]l W
Direction .
o . 2D Convo Layer Max Pooling Fully Connected
Slldlng Windows Filter: 3 x 3 Layer and Sciiax
Magnitude Size 10 F.Maps: 20 Pool Size =2 x 2 Layer
Stride: 1 x 1

Figure 5: CNN architecture for classification based on the motion fields

4 Experimental Results

In this work, we evaluate the proposed approach with the hand gesture recognition dataset (HGds) [31]
and validate the proposed methodology on the Human Motion DataBase (HMDB51) [32] along with the
University of Central Florida (UCF101) dataset [33]. The HGds dataset is partitioned into training and
validation sets using an 80:20 ratio, whereas the HMDB5I1 dataset follows a 70:30 split for training and
testing purposes. The HGds dataset comprises several video sequences featuring annotated hand gestures.
The dataset is generated by employing 11 subjects. Each subject simulates 5 different videos of the same
gesture. These video sequences consist of grayscale frames of 176 x 144 pixels. The experiment uses samples
with a minimum of 10 frames. We have selected 14 classes from the HGds dataset, including Motion 1, 2, 3,
4,5,6,7 8,104, 202, 408, 413, 415, and 426. The primary rationale for choosing these particular motions was
their clear differentiation in visual appearance. shows sample frames with their corresponding labels.
Each class represents a different motion and has an average of 2074 frames.

Motion 2 Motion 3 Motion 4 Motion 5
Motion 7 Motion 408 Motion 413 Motion 426

Figure 6: Sample frames and labels from the HGds dataset [31]

The HMDB51 dataset comprises a total of 51 different motions, but the videos are in their raw form,
and some of the videos feature almost no motion, such as smiling. We have manually investigated all the
videos and filtered out those videos that have either zero motion or are in raw format. After filtration, only
14 motions are selected, which are: cartwheel, catch, climb, climb-stairs, flic-flac, handstand, pullup, pushup,
push, bike-ride, ride-horses, situp, sword, and walk. Within these motions, there are an average of 40 videos
from different individuals performing the motions.

Comput Mater Contin. 2026;86(3):96 1

In addition to HMDB51, we also employ the UCF101 dataset for validation. UCF101 comprises 13,320
unconstrained YouTube videos spanning 101 action categories, grouped into 25 source groups, each with
4-7 clips. The videos are stored at a standard resolution of 320 x 240 pixels and 25 frames per second (fps).
The dataset is notably challenging due to substantial variability in camera motion, viewpoint, background
clutter, illumination, and actor appearance. In our experiments, we adopted a 70:30 train-test split to
assess generalization.

The rest of this Section presents experimental evaluations with the input vector in three different forms:
pixel representation of size X" downscaled pixel representation of size X(W>*/(tHxbW) "and motion
fields of size X(W>*H)/(bHxbW) Thig approach enables the study of the effect of dimensionality reduction on
training, generalization, and computational complexity.

The first experiment trains a CNN to classify video sequences based on pixel intensity levels. For this
experiment, the block size is irrelevant since the frames are processed as a whole and no motion estimation
is computed. However, the effect of the sliding window’s length is essential and is evaluated through several
experiments. A sliding window consists of N consecutive frames and constitutes the input vector. The
length of the sliding window, therefore, determines the amount of information available to the network for
classification. Fig. 7 represents the classification accuracy for different sliding window configurations. The
y-axis shows the accuracy (%) while the x-axis shows the number of training iterations. A single unit in the
graph represents 50 training iterations. It can be observed that for a shorter window, the network training is
not smooth due to the limited amount of available information.

100
95
90 -
85}
80

75+

Accuracy (%)

70

65

Sliding Window Length 2
—-Sliding Window Length 4

60 - ——Sliding Window Length 6
Sliding Window Length 8
55 —e-Sliding Window Length 10

——Sliding Window Length 12

50 L 1 L 1 L J
5 10 15 20 25 30 35 40

Iterations

Figure 7: The effect of sliding window on accuracy for full-resolution frames. Results are reported on the held-out
validation set

Furthermore, for larger windows, performance improvements are observed. However, this also causes
an increase in the cost of training and inference. It is therefore crucial to find an optimal sliding window
length that strikes a good balance between complexity and accuracy. Our experimental results show that a
sliding window of length 10 is optimal among the others.

A naive approach to reducing the cost of inference is to randomly downsample the input frames. In
the second type of experiment, a shallower network is trained on the downsampled dataset, resulting in
reduced computational cost. However, our results show that useful information is lost and the classification
performance is negatively affected. We have evaluated two experiments on the downsampled data. In this

12 Comput Mater Contin. 2026;86(3):96

set of experiments, the length of the sliding window is kept constant while the block size is varied as shown
in Fig. 8. A larger block size means greater loss of information and vice versa. It has been observed that even
for smaller blocks, network training is not satisfactory, and the validation accuracy is lower compared to
the trained network on full-resolution frames. This is attributed to the loss of information due to the initial
random downsampling of the input frames. It is, therefore, difficult to obtain improved performance with
this network on the downsampled frames. For the same downsampled dataset, another set of experiments
is conducted. We kept the block size constant to 7 x 7, which is the comparatively optimal choice, and
varied the sliding window length. Fig. 9 shows the experimental results. As downsampling the frames results
in a significant loss of information, the accuracy plots are not smooth, even for larger sliding windows.
Increasing the length of the sliding window further has a minimal impact on the network’s training and
validation accuracy.

100 -

Accuracy (%)

Block Size 3 x 3
—+Block Size 5 x 5

60 f ——Block Size 7 x 7
[o-Block Size 9 x 9
55 -e-Block Size 11 x 11

——Block Size 13 x 13

5 10 15 20 25
Iterations

Figure 8: Validation accuracy of different blocks for downsampled frames

100 -

Accuracy (%)

65

Sliding Window Length 2
——Sliding Window Length 4

60 /1f ——Sliding Window Length 6
) ¢-Sliding Window Length 8
55 —e-Sliding Window Length 10

—+-Sliding Window Length 12

50 L)
5 10 15 20 25
Iterations

Figure 9: The effect of varying the sliding window length for downsampled frames. The block size is fixed to 7 x 7

A heuristic approach for reducing the cost of inference involves first computing block-based motion
vectors in the video sequence, thereby reducing the input dimensions. In the third set of experiments, a
shallow network is trained on the block-based motion field vectors. Fig. 10 shows the effect of varying the

Comput Mater Contin. 2026;86(3):96 13

block size on the network performance. At the same time, the sliding window is fixed at a length of 10, based
on experimental evaluations of full-resolution frames. Larger block sizes mean fewer motion vectors and
vice versa. If the block size is too small, the resulting motion field is of large dimension which means lesser
acceleration of the network. On the other hand, large block sizes generate low-resolution motion fields which
result in faster computation at the cost of performance degradation. We extensively performed experiments
to find out an optimal block size for motion estimation that does not affect the network performance and
accelerates inference. We conclude that the optimal block size is 7 x 7 as shown in Fig. 10.

100 -

95

90

85

80

75 ¢

Accuracy (%)

70

65 f-

Block Size 3 x 3
——Block Size 5 x 5
——Block Size 7 x 7
—e-Block Size 9 x 9
—e-Block Size 11 x 11
—=-Block Size 13 x 13

60

551

) . . . 1 | | I
10 20 30 40 50 60 70 80 90 100 110
Iterations

50

Figure 10: The effect of varying the block size for motion field vectors. The sliding window is fixed to 10 frames

Fig. 11 represents the effect of the sliding window on the network performance, where the block size is
kept constant. As shown by earlier experiments, the block size of 7 x 7 produced better results on the HGds
dataset compared to other configurations. So for this setup, we kept the block size constant to 7 x 7. Smaller
lengths of the sliding window make the network training faster but degrade the performance. Similarly, a
larger sliding window increases the data size and computational complexity but provides better performance.

100 -

060060000009000006006000000060000000

95+

90

Accuracy (%)
v
T

Sliding Window Length 2
| ——Sliding Window Length 4
60| ——Sliding Window Length 6
[o-Sliding Window Length 8
-e-Sliding Window Length 10
——Sliding Window Length 12
10 20 30 40 50 60 70 80 90
Iterations

Figure 11: For a fixed block size, larger sliding window yield superior results. However, this also increases the cost of
inference

14 Comput Mater Contin. 2026;86(3):96

4.1 Overall Comparisons

Fig. 12 presents an overall comparison of the networks when motion fields, full-resolution frames, and
downsampled frames are used for hand gesture classification. The accuracy plots show that by employing
motion fields, we achieve the same accuracy as that of the full-resolution images but with much less
computational burden. The best average accuracy for our proposed technique is 99. 21%, which is slightly
better than the best average accuracy for the full-resolution frames, i.e., 99.14%. The downsampling of frames
results in the worst average accuracy. Although our proposed technique requires more iterations for training,
the network’s training is almost 20 times faster than that of the network using full-resolution frames, thanks
to the lightweight network. The training time consumed by the motion fields network is comparatively equal
to the training time for downsampled frames. However, the performance is similar to the full-resolution
frames. Our experiments suggest that employing motion fields enables us to achieve the same accuracy as
with full-resolution images, but at a significantly lower computational cost. Fig. 13 compares the approaches
described for different sliding windows and block sizes.

100

95+

90 -

85

80

Accuracy (%)

75+

70 ——Full Resolution Frames|

——Motion Fields
——Downsampled Frames

1 1 L L 1 L 1 L J
5 10 15 20 25 30 35 40 45 50
Iterations

Figure 12: The network performance on training data. Results are reported on the held-out validation set

@Full Resolution Frames
& Downsampled Frames
Motion Fileds

100

0
]

979

o
(=N

N
=

0
LS}

=3
$33333%3333%3%%3%%%%%%%

o

(=3

Accuracy (%)
R 6 0666666666660000000oeed

S
-

o
S

88

86

B33333333333333333333333

B3333333333333333333333%4
R I33333333333333333333333
199988009 58088589508 944/

84

3333333333333 3333333d

10,7 10,9 10, 11 1
Sliding Window Length, Block Size

—
w

Figure 13: The classification performance comparison of the three approaches for different block sizes and sliding
window lengths

Comput Mater Contin. 2026;86(3):96 15

Fig. 14 shows the computational complexity of the three approaches. It can be observed that the
computational complexity of the original-dimension images is significantly higher compared to the other
two approaches. When the length of the sliding window is 10, the time consumed for training is almost
3 h on a 3 GHz Quad-core CPU. Since the input images are of very low dimensions, that is, 144 x 176, we
conjecture that the network training time will significantly increase for high dimensional video frames. The
computational complexity of downsampled frames is very low. However, the accuracy is compromised. On
the other hand, the classification based on motion fields yields excellent performance, and the training time
is also significantly reduced. The memory, accuracy, inference time, preprocessing time, and comparisons
between the three techniques are shown in Fig. 15. The maximum memory for full-resolution frames is
4950.2 MB, which is mapped at 100. The block size is 7 x 7 and the length of the sliding window is 10 as
concluded from Figs. 7 and 10. It can be observed that the proposed technique achieves better performance,
with an almost three times faster inference compared to the full-resolution frames-based network.

180 170

@ Full Resolution Frames =

170 170

e o
BN)

A

160 | ©Downsampled Frames
Motion Fileds

Time (Seconds)

f=)
i=}

40

20 W
S

Yoo 7

N 22 I
10,7 10,9
Sliding Window Length, Block Size

oa 16

10, 13

Figure 14: The inference time comparisons of the three approaches for different block sizes and sliding window lengths

100

100 S Full Resolution Frames
@ Downsampled Frames

Motion Field

90.9

80

60

40

20

Time (Seconds), Accuracy (%), Memory (MBs %)

SRR

g

3.87
1.97
ssves)

Inference Time Accuracy Memory

SR g SRR

Figure 15: Comparison of accuracy and memory (in percentage) and inference time (in secs). Memory is scaled with
4950.2 MB mapped to 100%

16 Comput Mater Contin. 2026;86(3):96

4.2 Validation of the Proposed Method on HMDB51 and UCF101

We further validated the proposed methodology on the HMDB51 and UCF101 datasets, which are more
complex and noisy than the HGds dataset. From Section 4, we concluded that a block size of 7 x 7 and a
sliding window length of 10 yield the best results. We also observed that downsampled frames led to model
underfitting. Therefore, we validated the methodology using motion field vectors with a block size of 7 x 7
and a sliding window length of 10 on HMDB51 and UCF101. The results for motion field vectors are compared
with state-of-the-art methods.

A comparison of recent deep learning-based algorithms for human activity recognition is presented on
both the HMDB51 and UCF101 datasets in Fig. 16. The TSN [16] achieved accuracies of 69.4% and 94.2% with
approximately 22 M parameters. The SIFP architecture combined with Slowfast [17] improved recognition
performance to 80.1% and 96.9% with about 40 M parameters. ViTHAR [19], a transformer-based approach,
reported 79.5% and 96.5% accuracies but required nearly 80 M parameters. Spiking neural networks such
as SDM [20] achieved 67.7% and 92.9% with 32 M parameters. A contrastive learning method, TCLR [25],
achieved accuracies of 53.9% and 82.4% with approximately 33 M parameters.

BTSN [16] SIFP + Slowfast [17]

100 ViTHAR [19] & SDM [20]
8 TCLR [25] 5 MF [Proposed]
— el

=
o

(=) ®©
(=} (=}

o
S

Parameters (~M), Accuracy (%)

20

—
~
(=)

wv
N
o0

HMDB51

Figure 16: Accuracy and parameter comparison of the proposed MF method with TSN [16], SIFP+Slowfast [17],
ViTHAR [19], SDM [20], and TCLR [25] on the HMDB51 and UCF101 datasets

In comparison, our proposed motion fields (MF) approach significantly outperformed these state-of-
the-art methods, achieving accuracies of 82.5% and 971% on HMDB51 and UCFI101, respectively, while
requiring only 10 M parameters. Fig. 16 shows the accuracy and parameter comparisons between the
proposed and existing methods on the HMDB51 and UCF101 datasets.

5 Discussion

The proposed method leverages motion fields instead of full-resolution frames to improve video
classification efficiency. In this section, we analyze the impact of key parameters, including block size and
sliding window length, on the performance and computational complexity of the classification task.

Comput Mater Contin. 2026;86(3):96 17

5.1 Effect of Block Size

The block size used for motion estimation plays a crucial role in determining the trade-off between
computational cost and classification accuracy. Smaller block sizes generate denser motion fields, capturing
more detailed motion information but increasing the computational overhead. Conversely, larger block sizes
reduce the computational burden by simplifying the input representation, though they may sacrifice some
motion details, potentially affecting accuracy.

Our experimental results indicate that a block size of 7 x 7 offers an optimal balance between accuracy
and efficiency. This configuration achieved a high classification accuracy of 99.21% on the HGds dataset while
maintaining moderate computational complexity. Larger block sizes result in faster training and inference
due to reduced input dimensions but may lead to degraded performance. Smaller block sizes improve
performance but increase the computational demands of the network.

5.2 Effect of Sliding Window Length

The sliding window length determines how many consecutive frames are stacked together to form an
input vector for the network. A shorter sliding window provides a limited temporal context, which can
accelerate training but may result in lower classification accuracy due to incomplete motion representation.
In contrast, a longer sliding window offers a richer temporal context, enhancing the network’ ability to
distinguish between complex gestures at the cost of increased computational complexity. However, increasing
the sliding window results in model overfitting due to dense CNN architectures.

Empirical evaluation revealed that a sliding window length of 10 provides an optimal trade-off,
delivering robust classification performance without imposing excessive resource requirements. This con-
figuration achieved efficient training and inference while maintaining high classification accuracy across
multiple datasets.

5.3 Performance Comparison

To evaluate the effectiveness of the proposed method, we compared its performance with both full-
resolution and downsampled frame-based CNNs, as well as state-of-the-art approaches such as TSN [16],
SIFP+Slowfast [17], VITHAR [19], SDM [20], and TCLR [25]. Table 1 summarizes the results across three
benchmark datasets: HGds, HMDB51, and UCF101.

Table 1: Performance comparison of different CNN-based and transformer-based approaches for human activity
recognition

Dataset Method Accuracy (%) Inference time (s) Complexity
Full-Resolution CNN 99.14 59 High
HGds Downsampled CNN 96.42 15 Low
MF [Proposed] 99.21 17 Moderate
TSN [16] 69.4 29 Moderate
SIFP + Slowfast [17] 80.1 67 High
ViTHAR [19] 79.5 72 High
HMDB51
> SDM [20] 677 5 High
TCLR [25] 53.9 47 High
MF [Proposed] 82.5 20 Moderate

(Continued)

18 Comput Mater Contin. 2026;86(3):96

Table 1 (continued)

Dataset Method Accuracy (%) Inference time (s) Complexity
TSN [16] 94.2 27 Moderate
SIFP + Slowfast [17] 96.9 64 High
ViTHAR [19] 96.5 68 High
UCF101 SDM [20] 92.9 49 High
TCLR [25] 82.4 44 High
MEF [Proposed] 971 19 Moderate

The results demonstrate that the proposed motion fields (MF) approach achieves similar accuracy to
tull-resolution CNNs on HGds but with substantially lower inference time and moderate complexity. On
HMDBS5I, the MF approach attained the highest accuracy of 82.5%, outperforming TSN, SIFP+Slowfast,
ViTHAR, SDM, and TCLR while being significantly more efficient in terms of inference time. Likewise, on
UCF101, the proposed method achieved the top accuracy of 97.1% with only 19 s of inference, demonstrating
superior performance and efficiency compared to all state-of-the-art baselines.

5.4 Owverall Evaluation

The findings emphasize the efficiency of using motion fields for video classification. The dimensionality
reduction achieved through block-wise motion estimation does not compromise classification accuracy. The
systematic optimization of block size and sliding window length enables the network to strike a balance
between computational cost and performance, making the method suitable for deployment in resource-
constrained environments.

In conclusion, the proposed approach demonstrates significant improvements in computational
efficiency and training time without sacrificing accuracy. The results suggest that motion fields-based
classification offers a practical alternative to traditional pixel-based methods, particularly for applications
requiring real-time performance on edge devices.

6 Conclusions and Future Directions
6.1 Conclusions

This research investigates dimensionality reduction using motion fields to improve the efficiency of
video classification in computer vision applications. Traditional methods rely on full-resolution frames,
resulting in high computational costs and increased communication bandwidth requirements for cloud-
based inference. In contrast, the proposed method leverages motion fields to reduce input dimensions,
enabling faster and more efficient inference while maintaining high classification accuracy.

Our results show that the motion-field-based approach offers 20x faster training and comparable
accuracy to full-resolution methods. By bypassing motion compensation at the cloud end, this method
reduces both storage and computational costs. The optimal network configuration, with a block size of 7 x 7
and a sliding window length of 10, achieves a peak accuracy of 99.21% on the HGds, 82.54% on the HMDB51,
and 9713% on the UCF101 while demonstrating efficient inference times and improved generalization.

Additionally, the use of simpler networks trained on motion fields minimizes the risk of overfitting
and enhances generalization. The study validates the viability of motion fields for video classification and
demonstrates their potential for deployment on resource-constrained devices.

Comput Mater Contin. 2026;86(3):96 19

One of the key advantages of the proposed method is its ability to maintain high classification
performance using lightweight CNN architectures, making it suitable for real-time applications on edge or
low-power devices. It also eliminates the need for complex motion estimation techniques, such as optical
flow, thereby reducing both preprocessing and inference times.

However, the approach also possesses some limitations. The quality of motion fields depends heavily
on the block matching parameters and may be sensitive to noise or scene complexity. Additionally, while
effective on the selected datasets, further validation is needed across diverse video domains to ensure
broader applicability.

6.2 Future Work

In the future, we plan to extend this approach to more complex tasks, such as semantic segmentation,
and evaluate its performance on edge devices to support real-time applications. Further optimization of
network architectures and input representations may yield additional improvements in both accuracy and
efficiency for various real-world scenarios.

Acknowledgement: This work is supported by Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2025R896), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The
authors are grateful to Dr. Sajid Anwar (deceased) for his pioneering contribution in designing and formulating the
main idea. Unfortunately, he departed very early without tasting the fruit of his hard work. The authors dedicate this
work to him. They are grateful to the Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, FAST
School of Computing, and American University of the Middle East for their technical and logistical support. They are
also thankful to the American University of the Middle East and Princess Nourah bint Abdulrahman University for the
financial support.

Funding Statement: Supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2025R896).

Author Contributions: All authors contributed equally to the conceptualization and development of this work. Jalees
Ur Rahman was responsible for model design, experimental setup, visualization, and drafting the original manuscript.
Muhammad Hanif and Usman Haider managed the data analysis. Muhammad Hanif, Usman Haider and Saeed Mian
Qaisar validated the results. Muhammad Hanif, Usman Haider, Saeed Mian Qaisar and Sarra Ayouni reviewed and
edited the manuscript. Saeed Mian Qaisar and Sarra Ayouni secured financial support. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: The study utilizes publicly available online datasets. All dataset references and
access links are included in the paper. No proprietary or restricted data were used. The authors confirm that all data
can be accessed from the online repositories cited.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Pal SK, Pramanik A, Maiti J, Mitra P. Deep learning in multi-object detection and tracking: state of the art. Appl
Intell. 2021;51(21):6400-29. doi:10.1007/s10489-021-02293-7.

2. Manakitsa N, Maraslidis GS, Moysis L, Fragulis GF. A review of machine learning and deep learning for object
detection, semantic segmentation, and human action recognition in machine and robotic vision. Technologies.
2024;12(2):15. doi:10.3390/technologies12020015.

https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.3390/technologies12020015

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

Comput Mater Contin. 2026;86(3):96

Haider U, Hanif M, Rashid A, Hussain SF. Dictionary-enabled efficient training of ConvNets for image classifica-
tion. Image Vis Comput. 2023;135(1):104718. doi:10.1016/j.imavis.2023.104718.

Talaei Khoei T, Ould Slimane H, Kaabouch N. Deep learning: systematic review, models, challenges, and research
directions. Neural Comput Applicat. 2023;35(31):23103-24. d0i:10.1007/s00521-023-08957- 4.

Lyu Z, Yu T, Pan F, Zhang Y, Luo], Zhang D, et al. A survey of model compression strategies for object detection.
Multim Tools Applicat. 2024;83(16):48165-236. doi:10.1007/s11042-023-17192-x.

Anwar S, Hwang K, Sung W. Structured pruning of deep convolutional neural networks. ACM] Emerg Technol
Comput Syst (JETC). 2017;13(3):32. d0i:10.1145/3005348.

Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI, USA. Piscataway, NJ,
USA: IEEE. p. 1251-8.

Anwar S, Hwang K, Sung W. Fixed point optimization of deep convolutional neural networks for object recog-
nition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2015 Apr
19-24; Brisbane, QLD, Australia. Piscataway, NJ, USA: IEEE. p. 1131-5.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861. 2017.

Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices.
In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt
Lake City, UT, USA. Piscataway, NJ, USA: IEEE. p. 6848-56.

Freeman I, Roese-Koerner L, Kummert A. Effnet: an efficient structure for convolutional neural networks. In: 25th
IEEE International Conference on Image Processing (ICIP); 2018 Oct 7-10; Athens, Greece. Piscataway, NJ, USA:
IEEE; 2018. p. 6-10.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7-12; Boston, MA, USA.
Piscataway, NJ, USA: IEEE. p. 1-9.

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections
on learning. In: Thirty-First AAAI Conference on Artificial Intelligence; 2017 Feb 4-9; San Francisco, CA, USA.
Palo Alto, CA, USA: AAAI Press. p. 4278-84.

Sietsma, Dow. Neural net pruning-why and how. In: IEEE 1988 International Conference On Neural Networks;
1988 Jul 24-27; San Diego, CA, USA. Piscataway, NJ, USA: IEEE. p. 325-33.

Gedeon T, Harris D. Progressive image compression. In: Proceedings 0o£1992 IJCNN International Joint Conference
on Neural Networks. Piscataway, NJ, USA: IEEE; 1992. p. 403-7.

Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, et al. Temporal segment networks: towards good practices
for deep action recognition. In: European Conference on Computer Vision. Cham, Swizterland: Springer; 2016.
p. 20-36.

LiJ, Wei P, Zhang Y, Zheng N. A slow-i-fast-p architecture for compressed video action recognition. In: Proceedings
of the 28th ACM International Conference on Multimedia; 2020 Oct 12-16; Seattle, WA, USA. New York, NY, USA:
ACM. p. 2039-47.

Surek GAS, Seman LO, Stefenon SE, Mariani VC, Coelho LDS. Video-based human activity recognition using deep
learning approaches. Sensors. 2023;23(14):6384. d0i:10.3390/s23146384.

Divya Rani R, Prabhakar C. VITHAR: vision transformers for human action recognition in videos. In: 024 Fourth
International Conference on Multimedia Processing, Communication & Information Technology (MPCIT); 2024
Dec 13-14; Shivamogga, India. Piscataway, NJ, USA: IEEE. p. 358-63.

You H, Zhong X, Liu W, Wei Q, Huang W, Yu Z, et al. Converting artificial neural networks to ultralow-latency
spiking neural networks for action recognition. IEEE Transact Cognit Develop Syst. 2024;16(4):1533-45. doi:10.
1109/tcds.2024.3375620.

Murugan N, Sathasivam S. Real-time human action recognition by using R (2+1) D convolutional neural network.
In: 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT). Piscataway, NJ,
USA: IEEE; 2024. p. 1-6.

https://doi.org/10.1016/j.imavis.2023.104718
https://doi.org/10.1007/s00521-023-08957-4
https://doi.org/10.1007/s11042-023-17192-x
https://doi.org/10.1145/3005348
https://doi.org/10.3390/s23146384
https://doi.org/10.1109/tcds.2024.3375620
https://doi.org/10.1109/tcds.2024.3375620

Comput Mater Contin. 2026;86(3):96 21

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

Zhang B, Wang L, Wang Z, Qiao Y, Wang H. Real-time action recognition with enhanced motion vector CNNs.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE;
2016. p. 2718-26.

True], Khan N. Motion vector extrapolation for video object detection. J Imaging. 2023;9(7):132. d0i:10.3390/
jimaging9070132.

Wang M, Yi Y, Tian G. A new depth residual network combined recurrent with residual structure for human
action recognition from videos. In: Wu F, Liu J, Chen Y, editors. International Conference on Computer Graphics,
Artificial Intelligence, and Data Processing (ICCAID 2021). Bellingham, WA, USA: SPIE; 2022. Vol. 12168, p. 34-8.
Dave I, Gupta R, Rizve MN, Shah M. TCLR: temporal contrastive learning for video representation. Comput Vis
Image Underst. 2022;219:103406. doi:10.1016/j.cviu.2022.103406.

Guberman N. On complex valued convolutional neural networks. arXiv:1602.09046. 2016.

Sheng X, Yang Y. Human activity recognition with WiFi channel state information by complex-valued neural
network. In: 2025 37th Chinese Control and Decision Conference (CCDC). Piscataway, NJ, USA: IEEE; 2025.
p. 1275-80.

Pandian SIA, Bala GJ, George BA. A study on block matching algorithms for motion estimation. Int] Comput Sci
Eng. 2011;3(1):34-44.

Bhavsar DD, Gonawala RN. Three step search method for block matching algorithm. In: Proceedings of IRF
International Conference; 2014 Apr 13; Pune, India. p. 101-4.

Je C, Park HM. Optimized hierarchical block matching for fast and accurate image registration. Signal Process
Image Commun. 2013;28(7):779-91. doi:10.1016/j.image.2013.04.002.

Molina J, Pajuelo JA, Escudero-Viiolo M, Bescds J, Martinez JM. A natural and synthetic corpus for benchmarking
of hand gesture recognition systems. Mach Vision Appl. 2014;25(4):943-54. doi:10.1007/s00138-013-0576-z.
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. HMDB: a large video database for human motion recognition.
In: Proceedings of the International Conference on Computer Vision (ICCV); 2011 Nov 6-13; Barcelona, Spain.
Piscataway, NJ, USA: IEEE. p. 2556-63.

Soomro K, Zamir AR, Shah M. Ucfl01: a dataset of 101 human actions classes from videos in the wild.
arXiv:1212.0402. 2012.

https://doi.org/10.3390/jimaging9070132
https://doi.org/10.3390/jimaging9070132
https://doi.org/10.1016/j.cviu.2022.103406
https://doi.org/10.1016/j.image.2013.04.002
https://doi.org/10.1007/s00138-013-0576-z

	Action Recognition via Shallow CNNs on Intelligently Selected Motion Data
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Experimental Results
	5 Discussion
	6 Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

