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ABSTRACT: In multi-modal emotion recognition, excessive reliance on historical context often impedes the detection
of emotional shifts, while modality heterogeneity and unimodal noise limit recognition performance. Existing methods
struggle to dynamically adjust cross-modal complementary strength to optimize fusion quality and lack effective mech-
anisms to model the dynamic evolution of emotions. To address these issues, we propose a multi-level dynamic gating
and emotion transfer framework for multi-modal emotion recognition. A dynamic gating mechanism is applied across
unimodal encoding, cross-modal alignment, and emotion transfer modeling, substantially improving noise robustness
and feature alignment. First, we construct a unimodal encoder based on gated recurrent units and feature-selection
gating to suppress intra-modal noise and enhance contextual representation. Second, we design a gated-attention cross-
modal encoder that dynamically calibrates the complementary contributions of visual and audio modalities to the
dominant textual features and eliminates redundant information. Finally, we introduce a gated enhanced emotion
transfer module that explicitly models the temporal dependence of emotional evolution in dialogues via transfer
gating and optimizes continuity modeling with a comparative learning loss. Experimental results demonstrate that the
proposed method outperforms state-of-the-art models on the public MELD and IEMOCAP datasets.

KEYWORDS: Multi-modal emotion recognition; dynamic gating; emotion transfer module; cross-modal dynamic
alignment; noise robustness

1 Introduction

Multi-modal emotion recognition aims to emulate human emotion understanding by fusing text, visual,
and audio information and is widely used in intelligent interactive systems. Although unimodal research in
text analysis [I-3] and speech recognition [4-6] has advanced, human emotional expression often exhibits
cross-modal inconsistency. As shown in Fig. 1, taking utterance u3; as an example, the visual and audio
information of utterance (faceless face and flat tone) is vague, but when combined with the content of the
text, it implies a hidden anger. In addition, the emotion behind u3 is also related to the previous context u
and u,. In particular, the shift from using nicknames in u; to using full names in u, suggests an emotion shift
caused by u,, since another speaker tries to make a joke with a pretended lightness. It can be seen that the
relationships in {u;, u,, u3} are complex and multivariate, and involves the interdependence between the
two dimensions of modality and context. This example shows that the multi-modal method can significantly
improve the robustness of emotion understanding by fusing cross-modal complementary information.
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Figure 1: Examples of multi-modal dataset

At the same time, the inherent heterogeneity of multi-modal data, noise interference and the dynamic
evolution characteristics of emotional state make this field still have a broad space for exploration. Current
mainstream methods—such as DialogueRNN [7], which relies on static weight fusion, or graph convolu-
tional networks [8] that attempt to model cross-modal interactions—have made notable progress. However,
they generally suffer from several key limitations: Firstly, it is difficult for them to dynamically adjust the
complementary strength between cross-modalities according to modal quality and context, resulting in
insufficient noise suppression [9]. Secondly, the filtering mechanism for uni-modal internal and cross-modal
redundant information is weak; finally, most methods ignore the transfer modeling of emotional states in
dialogues [10], and rely too much on the context consistency hypothesis, which makes it difficult to effectively
capture the synergy of multi-modal cues when emotions change.

However, these methods still have obvious limitations. In particular, it is difficult to dynamically adjust
the cross-modal complementary strength, resulting in insufficient noise suppression. The uni-modal and
cross-modal redundancy filtering mechanisms are weak, and the emotion transfer modeling is generally
ignored [11], and the context consistency assumption is over-reliant. To address these limitations, we propose
a multi-level dynamic gating and emotion transfer framework for multi-modal emotion recognition. We
employ gated unimodal encoders to suppress noise and reduce heterogeneity, and a gated-attention cross-
modal encoder to dynamically calibrate the complementary contributions of audio and visual modalities
relative to text. In addition, we introduce a gated enhanced emotion transfer module to explicitly model the
temporal dependence of emotion evolution in dialogues, thereby jointly improving recognition performance
and robustness.
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In summary, the contributions of this paper are as follows:

«  We propose a multi-level dynamic gating and emotion transfer framework for multi-modal emotion
recognition. A dynamic gating mechanism is applied throughout unimodal encoding, cross-modal
alignment, and emotion transfer modeling, significantly improving noise robustness and feature align-
ment.

o We design gated recurrent units and a gated-attention mechanism to optimize model performance from
the perspectives of unimodal noise suppression and cross-modal dynamic weight distribution, which
effectively improves recognition accuracy in scenes with emotional transitions.

o We introduce an emotion transfer perception module that, together with comparative learning con-
straints on the transfer process, enhances the model’s adaptability to dynamic dialogue scenarios. We
validate the effectiveness and the synergistic contribution of the proposed modules on public datasets.

2 Related Works

The research of Multi-modal Emotion Recognition (MER) continues to deepen, mainly focusing on the
core directions of cross-modal interaction modeling, context-dependent capture, noise and heterogeneity
mitigation, and emotional evolution modeling.

Cross-modal interaction modeling forms the basis of MER. Early fusion strategies, such as simple
feature concatenation or static weight fusion [3,12], outperform uni-modal approaches but often overlook
deep inter-modal correlations, which may exacerbate the heterogeneity gap and noise interference [9].
With technological progress, graph neural networks (GNNs) have become powerful tools for capturing
complex cross-modal dependencies. For instance, Shi et al. [8] proposed a modality calibration strategy to
refine utterance and speaker representations at both contextual and modal levels, coupled with emotion-
aligned hypergraph and line graph fusion to optimize cross-modal semantic transfer and emotional pathway
learning. Chen et al. [13] innovatively fused multi-frequency features via hypergraph networks to enhance
high-order relationship modeling. Meng et al. [14] further designed a multi-modal heterogeneous graph
to enable dynamic semantic aggregation. Meanwhile, the Transformer architecture is also widely used for
feature alignment and interaction. Mao et al. [15] designed a hierarchical Transformer to manage contextual
preferences within modalities and employed multi-granularity interactive fusion to distinguish modal
contributions. Hu et al. [16] deeply integrated audio/visual features with text and combined cross-modal
contrastive learning to optimize difference representation.

Given the inherent sequential nature of dialogue, context and dialogue structure modeling is crucial.
Majumder et al. [7] used recurrent networks (such as RNN) to model dialogue sequences, but did not explic-
itly deal with modal heterogeneity. Subsequent studies have significantly strengthened the understanding of
context: Fu et al. [17] embedded an emotional transmission mechanism to coordinate temporal information
flow on the basis of integrating text ambidexterity and audio-visual information; Ai et al. [18] constructed
speaker relation graph and event graph to optimize the semantic representation and aggregation process.
Meng et al. [14] used heterogeneous graph structure to integrate richer context cues. Furthermore, the two-
level decoupling mechanism proposed by Li et al. [19] aims to coordinate modal features and dialogue

context, and improves the fineness of context modeling.

Dealing with the inherent noise (especially visual/audio modality) and heterogeneity of multi-modal
data is a key challenge to improve the robustness of the model. The research in this direction focuses
on feature filtering and dynamic weighting strategies. For example, Zeng et al. [20] introduced modal
modulation loss to learn the contribution weight of each mode, and designed a filtering module to actively
remove cross-modal noise. Yu et al. [21] used emotional labels to generate anchors to guide comparative
learning, and optimized decision boundaries to enhance the robustness of the model. Li et al. [22] used
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the attention mechanism to dynamically fuse modalities and perceived the influence of emotional transfer
on the importance of modalities. However, it is worth noting that the existing methods have obvious
limitations in dynamically calibrating the complementary intensity, for example, how to dynamically adjust
the supplementary degree of audio/visual modality to the dominant text modality according to the quality
and relevance of speech/image content, and fine-grained noise suppression. For example, there are still
obvious limitations in distinguishing informative visual cues from irrelevant background noise, and the
robustness to the inherent noise of visual/audio modality needs to be further improved.

The flow and transfer of emotions in conversation (emotional evolution modeling) is the core of under-
standing emotional dynamics. Bansal et al. [23] first proposed an explicit emotional transfer component to
capture the ups and downs in dialogue. The follow-up work attempts to deepen the understanding of the
transfer process: Tu et al. [24] integrated the common sense knowledge base to provide background support
for the reasoning and transfer of emotional states; Hu et al. [16] combined the adversarial training strategy
to optimize the representation learning in the process of emotion transfer. Nevertheless, most of the existing
methods rely on static context consistency assumptions, and it is difficult to deal with emotional mutation
scenarios adaptively. In such cases, emotions shift drastically, requiring the model to quickly integrate and
weigh new evidence from different modalities that may conflict or complement each other. Current methods
still lack sufficient capability to address this collaborative challenge.

In summary, although the current research has made progress in multi-modal fusion and context mod-
eling, collaborative optimization of dynamic gating mechanisms and emotion transfer remains insufficient.

3 Method
3.1 Task Definition

Given a dialogue containing |U| utterance U = {ul, CL U }, each utterance u; is composed of text (T),
visual (V) and audio (A) modalities, that is u; = {u,T ul, uf}. The goal of the emotion recognition task is to
predict the emotional label e; of each utterance, which is realized by a mapping function e; = F (x;), which
x; is the multi-modal feature representation of the utterance u;.

3.2 Model Architecture

To address the aforementioned challenges in multi-modal emotion recognition, we propose a model
named Multi-level Dynamic Gating and Emotion Transfer for Multi-modal Emotion Recognition (MDGET-
MER). The neural network architecture constructed under this framework consists of five main components:
a feature extractor for each modality, a Gated Uni-modal Encoder (GUE), a Gated Attention-based Cross-
Modal Encoder (Gated ACME), a Gated Enhanced Emotion Transfer Module (Gated EETM), and an
emotion classifier, as illustrated in Fig. 2. Each component is described in detail in the following sections.

3.3 Modal Feature Extraction

o Text modality: Liu et al. [25] proposed a RoBERTa pre-trained language model based on multi-layer
Transformer architecture, which optimizes text representation ability through mask language modeling
and dynamic mask strategy. After fine-tuning the model, we extracts the [CLS] label embedding of the
last layer as the semantic feature of the text.

» Audio modality: Eyben et al. [26] proposed an OpenSmile modular speech signal processing toolkit,
which supports batch extraction of audio parameters such as fundamental frequency and energy. In this
paper, an audio feature extraction system is constructed with reference to this method to achieve efficient
feature processing of speech signals.
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«  Visual modality: Huang et al. [27] proposed a DenseNet model based on dense blocks, which enhances

the ability of feature reuse.
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Figure 2: Architecture of MDGET-MER

3.4 Gated Uni-Modal Encoder

Inspired by the Transformer architecture, we propose a Gated Uni-modal Encoder (GUE) to encode
utterances within each modality. In the GUE framework, a Gated Recurrent Unit (GRU) is first employed
to encode the original features. A gating mechanism then dynamically adjusts the fusion ratio between the
original features and the encoded features, thereby enhancing the model’s robustness to noise and improving
its ability to extract contextual emotional cues. The network structure of GUE is shown in Fig. 3. Specifically,
the structure of GUE can be formalized as:

Gi = o (W, - [X; GRU (X)] +b}) @
X,r = LayerNorm (G;® X + (1- G;) ® GRU (X)) (2)
G2 =0 (Wg2 : [X§er;FF (X”')] + b;) (3)
Xy, = LayerNorm (G, © X + (1- G) © (X, + FF (X)) (4)

where X € R are the feature matrixs (n is the number of utterances, d is the feature dimension) represent-
ing all utterances; GRU(:) is a bidirectional GRU network, which is used to capture the temporal context;
LayerNorm(-) represents the layer normalization operation; [;] represents the feature splicing operation; o (+)
is a sigmoid function to generate gating weights in the range of [0, 1]; G, G, € R"*“ are the dynamic gating
matrixs, the fusion ratio of the original feature and the coding feature in the residual connection is controlled,
respectively. The gate vectors G; and G, automatically adjust the weight according to the input feature. For
example, when the input noise is large, G; can reduce the contribution of GRU(X) and more information of
the original feature X can be retained; W‘é € Rdx2d, Wg2 € R34 are the gated parameter matrixs, b}g, bé e R4
are learnable parameters; ® represents element-by-element multiplication; FF(-) is the feedforward network
layer composed of two fully connected networks, which can be expressed as:

FF (X,,) = dropout (FC (dropout (a (FC (X,,))))) (5)
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Figure 3: The network structure of GUE

FC(-) and dropout(-) represent the fully connected network and dropout operation, respectively, and a(-)
represents the activation function.

The GUE is applicable to three modalities at the same time through the shared parameter mechanism.
That is X}"r = GUE (X™), where m € {T, V, A}, and GUE(-) denotes a gated uni-modal encoder. The gating
mechanism can adaptively adjust the feature distribution of different modalities, so that the distribution of
utterance data of each mode is as close as possible, alleviating the multi-modal heterogeneity gap.

3.5 Gated Attention-Based Cross-Modal Encoder

We design a gated attention-based cross-modal encoder (Gated ACME) to effectively extract and
integrate complementary information from multi-modal emotional data. By incorporating a dynamic gating
mechanism, this module adaptively calibrates the contribution weights of visual and audio modalities
during cross-modal interactions, thereby enhancing the dominance of text features while selectively fusing
relevant complementary cues from non-text modalities. This design aims to mitigate redundancy and
noise, ensuring robust and context-aware multi-modal representation learning. As shown in Fig. 4, referring
to the Transformer structure, The Gated ACME is primarily composed of an attention network layer, a
feedforward network layer, and dynamic gating. Numerous studies in multi-modal emotion recognition
have indicated that the quantity of emotional information embedded in visual and audio modalities is
generally lower than that in textual modalities, thereby limiting the range of emotional expression in
these modalities [15,28]. Based on this hypothesis, we takes visual and audio features as complementary
information to supplement the emotional expression of text features, and introduces dynamic gating to
dynamically adjust the complementary intensity of visual and audio modalities to the text. In turn, textual
features of utterances are used to enhance visual and audio representations. In addition, in GUE, it is difficult
for GRU to pay attention to the global context information of the utterances. Therefore, a self-attention layer is
employed to capture global contextual emotional cues prior to cross-modal interaction. The designed Gated
ACME consists of the following three stages:

« Improve the global context awareness of utterances. The feature matrixs from the three modalities
X™ e R"™4 (m e {T,V,A}) serve as input to three multi-head attention (MHA) networks. The output
X" is directly added to the input X,, (the residual operation) to obtain the feature matrixs X}. This
process can be expressed by the equation:

X" =dropout (MHA (X", X", X™)) (6)
X" = LayerNorm (X" + X!") (7)

where MHA(+) denotes a multi-headed attention network.

» Cross-modal interaction modeling is performed, and a dynamic gating mechanism is introduced to
dynamically adjust the supplementary strength of visual and audio modalities to the text. The above
results are input into four MHA networks in pairs and the information of each modality is updated. Next,
information updates for each modality will be described separately.
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Figure 4: The network structure of gated ACME

o For the information update of the text modality, the gated weight is first generated:

Gy =o (W, - [XIsX)]+b]) (8)
Ga=o (W [X5X0]+b7) 9)

V WA ¢ R2dxd pV pA o d : coht -
where W', W' e R*%, by, by € R? are learnable parameters. Then the gating weight is applied to
cross-modal attention output:

X!V =dropout (Gy © MHA (X, X{, X)) (10)

X4 = dropout (G4 © MHA (X, X5, X%))) (11)

sr?

where Gy, Gy € [0, l]nx‘i control the contribution ratio of visual and audio modalities to the text; in the
first MHA network, the text feature matrix X[ is used as the query Q, the visual feature matrix X is used
as the key K and value V, and the output X/ " is a text feature matrix containing visual information.
In the second MHA network, the query Q comes from X, the key K and the value V come from X%,
XTIV and X7 are
connected, and get X[, and X7, XI and X[ are combined by residual operation to obtain a new text

feature matrix X :

and get X/ 4, this is a text feature matrix containing audio information. Finally,

X! =a(FC(CAT (X 7V, X)) (12)
X! =LayerNorm (X" + X + X[) (13)

where CAT(-) denotes the concatenation operation.
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 For the information update of visual modality, the gating weight is first generated:

Gy = o (W, - [X);

sr?

X, ]+b;) (14)
 Then the gating weight is applied to cross-modal attention output:

X" =dropout (Gy © MHA(X{,, X0, X)) (15)

o where Gy € [0, l]nXd controls the contribution ratio of text information to visual features; in the MHA
network, the visual feature matrix X/ is used as the query Q in the MHA network, and the text feature
matrix X is used as the key K and value V, so as to obtain the visual feature matrix with text information
enhancement X <7, Similar to the process of updating text information, the residual operation is applied
to add XV, XY and X7 to obtain a new visual feature matrix X :

X) = LayerNorm (XV + X7+ XY“T) (16)

 The information updating process of audio modality is similar to that of visual modality:

Ga=0 (W} [X0: X5 ] +b3) (17)
X" = dropout (G4 © MHA (X4, X}, X0,)) (18)
X2 = LayerNorm (XA + X4+ Xf“_T) (19)

 The expression ability and stability of the model are improved, and the feedforward network is enhanced.
Before the feature is transmitted to the feedforward network, feature selection gating is introduced to
filter redundant information:

Gr=0 (W, X[} +b]) (20)

where Gr € [0, l]nXd is feature selection gating and suppresses irrelevant features; WgF e R4, bg e R4
are learnable parameters. After that, the feature selection gating X is used as the input of each feed-
forward network layer FF(-) to obtain X}”; at the same time, the residual operation is used to combine
X™, X and X}" to obtain the characteristic matrix X}":

X7 = FF(Gro X)) (21)
Xf, = LayerNorm (X" + X[} + X}') (22)

r

3.6 Gated Enhanced Emotion Classifier

After multi-layer GUE and Gated ACME coding, the final feature matrix H”, H"and H* are obtained.
Then, using the modal fusion gating, the contribution of each modal feature is dynamically weighted to
obtain the fusion feature matrix H:

m T 14 A m
Gm=0 (W, -[H;H";H | +b]') (23)
Heate =GLoH '+ G o H  + G4 0 H* (24)
H= CAT (HT,HV,HA)Hgate) (25)

where G,, = [G;, GY, G;‘;,] e [0,1]™ are modal gating matrices, which control the fusion weights of each
mode; W," € R3d%3, by € RR? are learnable parameters; Hga/, € R™*4 is a gated weighted fusion feature, which
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is spliced with the original modal features to retain complete information. Finally, the feature dimension of
H is converted to |E| (the number of emotions) by using the gated enhanced emotion classifier, so as to obtain
the predicted emotion e; (e] € E). The process can be expressed as follows:

Gf:a(ng-h,erbfg) (26)
Wt = G o by (27)
li = dropout(ReLU(Wlh{”tmd)) (28)
¥ =Softmax (Wsmaxli) (29)
e; = argmax (y;) (30)

where Gy e [O,l]d is feature selection gating, inhibiting feature dimensions unrelated to emotion

ng e R9x4, ng( e R4 are learnable parameters; h; € H, Wj, Wy,,,, are learnable parameters; Softmax(-)
denotes the softmax function; argmax(-) denotes the argmax function. The loss function is defined as follows:

1 NonG) m
Lo=— 503 yiglogyty+n (1w + 1w{1) (31)
i=1 j=1

where 7 is the L2 regularization coefficient; n(i) is the number of utterances in the i-th dialogue, and N is
the number of all dialogues in the training set; y;; represents the probability distribution of the predicted
emotion label of the j-th utterance in the i-th conversation, and y;; represents the truth label.

3.7 Gated Enhanced Emotion Transfer Module

To enhance the model’s capacity for capturing the dynamic evolution of emotions within dialogues, we
introduce a gated enhanced emotion transfer module (Gated EETM). This module explicitly models emotion
transition patterns through a transfer gating mechanism, which suppresses spurious emotional associations
between unrelated utterances. By emphasizing contextual emotional shifts and reducing reliance on static
context assumptions, Gated EETM improves the recognition of emotional changes and reinforces the model’s
adaptability in conversational scenarios. As shown in Fig. 5, The Gated LESM consists of three main steps,
namely, first constructing the probability tensor of emotion transfer, then generating the label matrix of
emotion transfer, and finally using the loss of emotion transfer for training.

« Emotion transfer probability: Inspired by Gao et al. [29], we use two parameter-shared Gated ACMEs
to process the input multi-modal features, the output X € R"™*? (m € {T, V, A}) of GUE, respectively,
to generate two feature matrices with different representations but consistent emotional semantics:

H = GatedACME (X", X", x*) (32)
H' = Gated ACME' (X", X", X*) (33)

where H, H' € RIUIxd_ |U| are the number of utterances in the dialogue, and d is the feature dimension.
For each pair of utterance u; and u;, calculate its emotion transfer possibility weight G4 (i, j):

Girans (i, j) = 0 (W;"" - CAT (hy, h}) + by ") (34)
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where h; € H and h; € H' represent the feature vectors of the i-th and j-th statements, respectively;

Wgt’“”s e R2x1o & b;”‘”s € R; finally, the gated weight Gy,ans (i, j) is applied to the feature stitching
results to generate a sparse emotion transfer probability tensor 77;:

7~ij = Girans (i,j) -CAT (hi’ h;) € R|U|><|U|><2d )

« Emotion transfer label: Using the real emotion labels from the dataset, the emotion transfer state between
adjacent utterances is marked. Specifically, if the real emotions of the two utterances are the same, their
emotional transfer state is marked as 0, indicating that there is no emotional transfer; on the contrary,
if their real emotions are different, the emotional transfer state is marked as 1, indicating that emotional
transfer has occurred. Through the above operation, a |U| x |U| dimensional emotion transfer label
matrix is obtained.

« Emotion transfer loss: After constructing the emotion transfer probability and label, a loss function is
defined to train the model. The gated enhanced emotion transfer module is a binary auxiliary task, which
aims to correctly distinguish the emotional transfer state between utterances. This encourages the model
to capture emotional dynamics and reduce over-reliance on contextual information. Firstly, in order to
obtain the predicted emotion transfer state s;; (s: ; €10, 1}), the full connection layer is used to convert
the feature dimension of the probability tensor to 2:

lij’ = dropout (ReLU (W/t;;)) (36)
zj; = Softmax (Wemaxsl;) (37)
sij = argmax (z;j [k]) (38)

where t;; represents the emotion transfer probability vector between the i-th statement and the j-th
statement. t;; € 7, Z; j is the probability distribution of the predicted emotional transfer label between
the i-th statement and the j-th statement. Wl’ and Wy, are learnable parameters. The low-confidence
sentences are filtered by transfer gating Gy,qns (j, k), and the defined emotion transfer loss is:

n(i

Z Zijk logzlijlﬁ Gtrans (]) k) >T (39)
k=1

VB

I
—

1
LS:_N

1

where the gating threshold 7 can be set manually or optimized by the verification set; n(i) is the number
of utterances in the i-th dialogue, and N is the number of all dialogues in the training set; z’ represents
the probability distribution of the predicted emotion transfer label between the j-th and k-th utterances
in the i-th dialogue, and z; j represents the truth label.

3.8 Loss Function

We combine the classification loss £ and the emotion transfer loss £, and explicitly add the gated
parameter set W, in the regularization term to obtain the final training target:

L=L +AL+n(|W]+ | W) 40

where W, contains the learnable parameters of all gating mechanisms; A is a compromise parameter whose
value is in the range of [0, 1]. # is an L2 regularization weight, which W is a set of all learnable parameters
except the gating mechanism. In addition, A can be set manually or adjusted automatically using the method
of Cipolla et al. [30].
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Figure 5: The network structure of gated EETM. Gated EETM consists of three key steps: (1) Constructing the emotion
transfer probability tensor: Two parameter-shared Gated ACME modules process the input multi-modal features
to generate two representationally distinct yet emotionally consistent feature matrices. (2) Generating the Emotion
Transfer Label Matrix: Based on the ground-truth emotion labels, a binary emotion transfer label matrix is constructed.
(3) Emotion Transfer Loss for Training: The emotion transfer probability tensor is passed through a fully connected
layer to predict transfer states

4 Experiment and Results Analysis
4.1 Datasets

To validate the effectiveness of the proposed method, we conducted experiments on the publicly
available multi-modal emotional dialogue datasets MELD [31] and IEMOCAP [32]. A brief description of
each dataset is provided below.

o MELD dataset: This dataset is a multi-modal sentiment analysis dataset, including more than 1400
dialogues and more than 13,000 utterances from the TV series ‘Friends. There are seven emotional
categories in the dataset, namely anger, disgust, sadness, joy, surprise, fear and neutral.

o IEMOCAP dataset: This dataset is a performance-based multi-modal multi-speaker dataset composed
of two-person dialogues, including text, visual and audio modalities. The dataset contains 151 dialogues
and 7433 utterances, which are labeled with six emotional categories: happy, sad, neutral, angry, excited
and frustrated.

The statistical information of MELD and IEMOCAP is shown in Table 1.

Table 1: Division of experimental datasets

Datasets MELD IEMOCAP

#Dialogue #Utterance #Dialogue #Utterance
Train 1039 9989 100 5163

(Continued)
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Table 1 (continued)

Datasets MELD IEMOCAP
#Dialogue #Utterance #Dialogue #Utterance
Val 114 1109 20 647
Test 280 2610 31 1623

4.2 Model Evaluation and Training Details

We used accuracy (ACC) and weighted F1 score (w-F1) as the main evaluation indicators, and used F1
score as an evaluation indicator for each individual emotional category.

All experiments in this paper are conducted on NVIDIA GeForce RTX 3090 graphics card, using CUDA
11.8 version and deep learning framework PyTorch 2.5.0, using AdamW as the optimizer, the number of
heads of all MHA networks is set to 8, and the L2 regularization factor is set to 0.00001. The other parameters
of the model are shown in Table 2, where Batch_size is the batch size, Learning_rate is the learning rate,
GUE_drop is the random inactivation rate of GUE, ACME_ drop is the random inactivation rate of Gated
ACME, GUE_layers represents the number of network layers of GUE, and ACME_layers represents the
number of network layers of Gated ACME.

Table 2: Experimental parameters setting

Datasets  Batch_size Learning rate GUE_drop ACME_drop GUE_ layers ACME_layers

MELD 64 0.00002 0.1 0.3 2 3
IEMOCAP 32 0.000025 0.2 0.4 2 5

4.3 Comparative Experimental Analysis
4.3.1 Comparison to Baselines on the MELD Dataset

We conduct a comprehensive evaluation of MDGET-MER on the MELD dataset and compared it with
nine comparison models. As shown in Table 3, on the MELD dataset, MDGET-MER is significantly better
than all comparison models with an accuracy of 68.51% and a weighted F1 score of 67.23%, which is 0.66 and
0.53 percentage points higher than the optimal comparison model CEN-ESA (67.85% Acc/66.70% w-F1).
Multi-modal emotion recognition studies have shown that, disgust and anger noise is higher. For example, in
the MELD dataset, the study [33] can significantly improve the classification accuracy of these two categories
by introducing sample weighted focus contrast (SWFC) loss, indirectly proving its high noise characteristics.
The advantage of MDGET-MER is particularly prominent in the high-noise emotion category. For example,
the F1 score of MDGET-MER in the ‘disgust’ category is 33.08%, which is much higher than 26.92% of CFN-
ESA and 2.60% of MMPGCN, which verifies the effective suppression of visual and audio noise by dynamic
gating mechanism. In the ‘fear’ category, the F1 score (21.00%) is slightly lower than that of EACL (21.62%),
but significantly better than that of COMPM (2.90%), indicating that the model is more adaptable to low
SNR modes. In addition, MDGET-MER achieved an F1 score of 81.03% in the neutral category, which is
0.98% higher than that of CFN-ESA, highlighting the ability of text-led cross-modal interaction design to
strengthen the semantic core.
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Table 3: Experimental results on the MELD dataset

MELD
Models . .
Neutral Surprise  Fear Sadness Joy Disgust  Anger Acc/%  w-F1l/%
F1/% F1/% F1/% F1/% F1/% F1/% F1/%
MM-DEN (28] 79.84 58.43 15.79 31.65 64.01 28.04 53.60 67.05 65.21
SACL- 77.42 58.50 20.41 39.58 62.76 34.71 52.08 64.52 64.55
LSTM [16]

GA2MIF [34] 76.92 49.08 - 2718 51.87 - 48.52 61.65 58.94
CoMPM [35] 82.00 49.20 2.90 32.30 61.50 2.80 45.80 64.10 65.30
M3Net [13] 79.14 59.54 13.33 42.86 65.05 21.69 53.54 66.59 65.83
Der-GCN [18] 80.60 51.00 10.40 41.50 64.30 10.30 57.40 66.80 66.10
MMPGCN [14] 78.60 53.80 3.20 25.20 53.30 2.60 45.00 60.70 59.30
EACL [21] 80.44 60.48 23.54 42.41 65.22 33.86 54.01 - 6712

CFN-ESA [22] 80.05 58.78 21.62 41.82 66.50 26.92 54.18 67.85 66.70
MDGET-MER 81.03 59.05 21.00 40.13 65.52 33.08 55.44 68.51 67.23

(ours) 80.78+ 5874+ 1949+ 3874+ 64.41+ 3191 + 5451+ 6830+ 6704+
0.25 0.31 1.51 1.39 111 117 0.93 0.21 0.19

4.3.2 Comparison to Baselines on the IEMOCAP Dataset

Similarly, in order to fully verify the effectiveness of the proposed method, we also compare MDGET-
MER with 9 comparison models on the IEMOCAP dataset. As shown in Table 4, MDGET-MER is
significantly superior to all comparison models with an accuracy of 71.78% and a weighted F1 score of
71.85%, and is 1.00 and 0.81 percentage points higher than the optimal comparison model CFN-ESA (70.78%
Acc/71.04% w-F1), respectively. In fine-grained emotion analysis, MDGET-MER’s ability to model complex
emotional states is further highlighted: for example, the F1 score of the ‘excited’” category reaches 78.40%,
which is 3.58 percentage points higher than that of CFN-ESA (74.82%), reflecting the enhancement effect
of cross-modal dynamic alignment on positive emotions. Notably, MDGET-MER achieved an F1 score of
59.81% in ‘Happy’, which is more balanced than EACL (51.29%), indicating that it balanced the strength and
diversity of modal contributions through a multi-level gating mechanism.

Table 4: Experimental results on the IEMOCAP dataset

IEMOCAP
Models Happy Sad Neutral Angry Excited  Frustrated  Acc/% w-F1/%
F1/% F1/% F1/% F1/% F1/% F1/%
MM-DEN [28] 43.36 83.23 70.03 70.19 73.11 64.01 69.44 68.83
SACL-LSTM [16] 51.30 82.25 71.39 67.78 75.26 66.94 70.55 70.60
GA2MIF [34] 46.15 84.50 68.38 70.29 75.99 66.49 69.75 70.00
CoMPM [35] 60.70 82.80 63.00 59.90 78.20 59.50 67.70 67.20
M3Net [13] 60.93 78.84 70.14 68.06 7711 67.42 70.92 71.07
Der-GCN [18] 58.80 79.80 61.50 72.10 73.30 67.80 69.70 69.40
MMPGCN [14] 56.70 82.50 65.80 54.30 78.80 69.90 68.90 68.00
EACL [21] 51.29 81.80 73.32 6754 71.27 67.76 - 70.41
CFEN-ESA [22] 53.67 80.60 71.65 70.32 74.82 68.06 70.78 71.04
MDGET-MER 59.81 81.12 70.84 68.60 78.40 67.78 71.78 71.85
(ours) 58.29 + 80.63 + 70.39 + 66.68 + 7712 + 65.82 + 71.62 + 7172 +

1.52 0.49 0.45 1.92 1.28 1.96 0.16 0.13
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Fig. 6 describes the confusion matrix of MDGET-MER and GA2MIF on the IEMOCAP dataset.
MDGET-MER had higher correct recognition rates in happy (64.58% vs. 47.92%), excited (75.25% vs. 70.9%)
and sad (82.45% vs. 81.22%) categories, and more significant inhibition of cross-category misclassifications
such as happy — excited and neutral — happy (such as happy misclassification as excited is only 20.83%,
lower than 25.0% of GA2 MIF). Neutral misjudged as happy is only 4.69%, lower than 7.03% of GA2MIE.
Even if GA2MIF has alocal accuracy advantage in angry recognition (72.35% vs. 69.41%), the misjudgment of
MDGET-MER is still more concentrated (for example, the misjudgment of angry as frustrated is only 21.18%,
lower than 25.88% of GA2MIF). On the whole, MDGET-MER has more accurate fine-grained distinction
between positive emotions (happy, excited) and negative emotions (sad), less cross-category confusion, and
more advantages in the stability and accuracy of emotion recognition.

0.8

hap hap 0.0 25.0 0.69

0.7

sad 4 sad 4 0.82 0.82 7.76

0.6

0.5
;\3 neu < 05 ;\3 neu < 72.66
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Figure 6: Comparison of confusion matrices between MDGET-MER and GA2MIE hap, sad, neu, ang, exc, fru denote

happy, sad, neutral, angry, excited, and frustrated, respectively: (a) Confusion matrix of MDGET-MER; (b) Confusion
matrix of GA2MIF

4.4 Ablation Experimental Analysis
4.4.1 The Importance of Multi-Modality

In order to verify the importance of text, visual and audio modalities to MDGET-MER, we conduct
ablation experiments on MELD and IEMOCAP datasets, as shown in Table 5. The experimental results show
that the text modality plays a dominant role in multi-modal emotion recognition. Under the single modality
setting, the accuracy of MELD and IEMOCAP is 67.75% and 67.56%, respectively, and the weighted F1 score
is 66.47% and 67.38%, which is significantly better than that of vision (MELD Acc: 48.71%; IEMOCAP Acc:
46.01%) and audio (MELD Acc: 50.01%;iEMOCAP Acc: 54.45%), which verifies that text features contain the
most abundant emotional semantic information. For example, in the MELD dataset, the weighted F1 score
of the pure visual modality is only 32.71%, which is much lower than 66.47% of the text modality, indicating
that facial expressions and body movements are susceptible to environmental noise.
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Table 5: Dataset ablation study results of modal settings

MELD IEMOCAP
Models settings  Acc (%) w-F1(%) Acc(%) w-F1(%)
Text 6775 6647 6756 6738
Visual 4871 3271 4601 4504
Audio 5001 4212 5445 5189
Text + Visual 6779 6646 6858  68.67
Text + Audio 6782 6647 6967 6927
Visual + Audio 5L00 4378 6136 60.64

Text + Visua + Audio 68.51 67.23 71.78 71.85

In the dual-modal experiment, the text + audio combination performed best: the accuracy and weighted
F1score of IEMOCAP increase to 69.67% and 69.27%, respectively, which increase by 2.11 and 1.89 percentage
points compare with the pure text mode, indicating that audio features such as speech tone can effectively
supplement the implicit emotional cues of the text. The accuracy of text + visual combination on MELD
(67.79%) is close to that of pure text model (67.75%), suggesting that the contribution of visual modality in
short dialogue scenes is limited. It is worth noting that the accuracy of visual + audio combination (MELD:
51.00%; IEMOCAP: 61.36%) is significantly lower than other dual-modal settings, confirming that the model
is difficult to effectively capture cross-modal emotional associations when there is a lack of text dominance.

When the text + visual + audio tri-modality is fused, the model performance reaches the peak: the
accuracy of MELD and IEMOCAP is 68.51% and 71.78%, respectively, which is 0.69 and 2.11 percentage points
higher than the optimal bi-modal combination (text + audio), and the weighted F1 score is increased by 0.76
and 2.58 percentage points. This result verifies the multi-modal synergy effect: for example, in the ‘excited’
category of IEMOCAP, the visual modality and the audio modality adaptively strengthen the supplement to
the text through the dynamic gating mechanism, so that the F1 score is 4.3% higher than that of the dual
modality. Experiments show that MDGET-MER maximizes the utilization of complementary information
while suppressing noise through text-driven cross-modal interaction design. Especially in complex scenes
where visual/audio modalities provide key clues (such as facial expressions or speech urgency in the ‘anger’
category), three-modal fusion is significantly better than single-modal or dual-modal settings, providing a
robust and efficient solution for dialogue emotion recognition.

4.4.2 The Importance of Each Module

In order to verify the synergy of each module in MDGET-MER, we analyze the contribution of its core
components through four ablation experiments, as shown in Table 6.

Table 6: Ablation study results after removing modules

MELD IEMOCAP
Models
Acc/% w-F1/% Acc/% w-F1/%
w/o GUE 68.17 66.90 71.43 71.06
w/o Gated ACME 67.86 66.50 68.97 68.89
w/o Gated EETM 68.28 66.93 71.01 71.03

(Continued)
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Table 6 (continued)

Models MELD IEMOCAP
Acc/% w-F1/% Acc/% w-F1/%
w/o emotion 68.30 67.01 71.06 71.08
transfer loss
w/o Gate of GUE 68.25 67.02 71.54 71.17
w/o Gate of Gated 68.21 66.94 69.51 69.36
ACME
w/o Gate of Gated 68.34 67.01 71.16 71.19
EETM
w/o Gate 67.36 65.86 69.38 69.49
MDGET-MER 68.51 67.23 71.78 71.85

Firstly, after removing the Gated Uni-modal Encoder (GUE), the accuracy of MELD and IEMOCAP
decrease to 68.17% and 71.43%, respectively (0.34 and 0.35 percentage points lower than the complete model),
and the weighted F1 score decreased by 0.33 and 0.79 percentage points, respectively. Experiments show
that the ability of GUE to suppress single-modal noise through dual dynamic gating is crucial to model
robustness, especially when there is inherent noise in visual and audio modalities, which verifies its key role
in the purification of original features.

Secondly, after removing the Gated Attention-based Cross-Modal Encoder (Gated ACME), the per-
formance of the model is significantly degraded: the accuracy of IEMOCAP plummeted to 68.97% (2.81
percentage points lower than the complete model), and the weighted F1 score decrease by 2.96 percentage
points. It can be seen from the results that the cross-modal dynamic interaction design can accurately capture
the complementary information of the auxiliary modes.

Then, when the Gated Enhanced Emotion Transfer Module (Gated EETM) is removed, the accuracy
of MELD decreased slightly to 68.28%, and the weighted F1 score decreases by 0.30 percentage points. In
IEMOCAP, the accuracy rate decreased by 0.77 percentage points. Because it can not explicitly model the
law of emotion transfer, the optimization ability of context dependence biasis weakened, indicating that this
module is more critical to the modeling of emotion mutation in long dialogue scenes.

Finally, when the hierarchical gating mechanism is completely removed, the model performance
suffered the greatest loss: the weighted F1 scores of MELD and IEMOCAP fell to 65.86% and 69.49%,
respectively (1.37 and 2.36 percentage points lower than the complete model). The results show that the
dynamic gating mechanism systematically optimizes the overall performance through synergy, and verifies
the enhancement effect of gating design on complex emotional expression.

4.4.3 The Importance of Gating

In order to deeply analyze the specific contribution of each stage of gating in the dynamic gating
mechanism, we further design ablation experiments to systematically remove the gating units in each key
module of the model (as shown in Table 6) to evaluate its impact on the overall performance.

Firstly, after removing gate of GUE, the performance of the model on MELD and IEMOCAP decrease
slightly (MELD Acc: 68.25%, w-F1: 67.02%; IEMOCAP Acc: 71.54%, w-F1: 71.17%). This shows that although
the dual dynamic gating in GUE is not the biggest driving force for performance improvement, its role in
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noise filtering and feature enhancement has a fundamental contribution to model robustness. After removal,
the sensitivity of the model to single-mode noise increases slightly.

Secondly, removing gate of Gated ACME causes significant damage to model performance, especially
on the IEMOCAP dataset (IEMOCAP Acc: 69.51%, w-FI: 69.36%, 2.27% Acc/2.49% w-F1 lower than
the complete model). This strongly verifies that dynamic gating in Gated ACME is the key pillar of
model performance. The gating is responsible for dynamically calibrating the complementary strength of
visual/audio modalities to text features and feature selection. Its removal causes the model to fail to effectively
suppress cross-modal redundant information and adaptively adjust the modal contribution, which seriously
weakens the efficiency of cross-modal dynamic alignment and complementary information utilization.

Then, after removing gate of Gated EETM, the performance of the model on MELD decreases the
least (Acc: 68.34%, w-F1: 67.01%), while on IEMOCAP decreases significantly (Acc: 71.16%, w-F1: 71.19%).
And after removing the emotion transfer loss, the performance of the model on MELD decreases the least
(Acc: 68.30%, w-F1: 67.01%), while on IEMOCAP decreases significantly (Acc: 71.06%, w-F1: 71.08%). This
difference indicates that the gating of Gated EETM plays a more significant role in modeling more complex
emotional evolution dependence and inhibiting false associations in long dialogues (such as IEMOCAP).
Removing this gating weakens the model’s ability to focus on key cues in emotional mutation scenarios.

Finally, when all gating mechanisms are removed, the model performance suffers the greatest loss
(MELD Acc: 67.36%, w-F1: 65.86%; IEMOCAP Acc: 69.38%, w-F1: 69.49%) is much lower than the perfor-
mance of removing any single stage gating. This clearly shows that the gating mechanism in GUE, Gated
ACME and Gated EETM does not operate in isolation, but jointly optimizes the noise robustness, cross-
modal dynamic alignment ability and emotional evolution modeling accuracy of the model through synergy,
and achieves a systematic improvement in overall performance.

4.5 Time and Memory Overhead

In Table 7, we present the running time and memory usage of our proposed model alongside several
baseline methods for the MER task on both datasets. Compared to other models, M3Net and CFN-ESA
demonstrate significantly lower time consumption on the MELD dataset, while CFN-ESA also achieves
competitive time efficiency on IEMOCAP. MM-DFN and SACL-LSTM exhibit considerably higher running
times across both datasets. In terms of memory usage, CFN-ESA consumes the least memory on MELD,
while our model shows the most efficient memory utilization on IEMOCAP. M3Net and SACL-LSTM
require substantially more memory across the datasets. Overall, our proposed MDGET-MER not only
achieves strong performance metrics but also maintains a favorable balance between computational time
and memory efficiency.

Table 7: Time and memory overhead

IEMOCAP MELD
Models #Time #Memory #Time #Memory
M3Net [13] 6.78 11,356.89 4.2 708.62
MM-DEFN [28] 218 1836.78 2217 717.89
SACL-LSTM [16] 2.38 3087.97 13.27 2145.78
MMPGCN [14] 3.66 2897.78 14.89 1987.66
CFN-ESA [22] 1.58 600.08 5.78 1045.89

MDGET-MER (ours) 1.48 1972.77 5.12 1021.34
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The term “Time” refers to the duration(s) required for training and testing in each epoch, and “Memory”
refers to the consumption (MB) of allocated and reserved memory.

4.6 Case Study

This section shows a case of emotional transfer. Fig. 7 shows a dialogue scenario in the IEMOCAP
dataset. When the speaker continuously outputs multiple sentences with neutral real emotions, the existing
models (such as M3Net) tend to misjudge the subsequent utterance as neutral. This is due to its over-
reliance on historical context, which leads to the failure of the model to effectively capture the cross-modal
complementary information of the current utterance, thus making it difficult to model the instantaneous
dynamic evolution of emotions.

Dialogue Utterance '\/ True label \/\ Predictof \
NS A MDGET-MER M3Net /

I guess so. Neutral | [ Neutral | [ Neutral
\ J/ N J N J

Calm voice

Here you go. . N P N P N
Thank you! I Neutral | ([ Neutral | { Neutral

Calm voice

© WaitRach! |
‘Where's the other|
i one?

® & 0

, N s N s
{ Neutral [ Neutral | [ Neutral

Low voice

§ Oh7what,you—you‘§
iwant both of them?
High pitch

Neutral

Figure 7: A conversational case in the IEMOCAP dataset

In contrast, MDGET-MER can collaboratively optimize the fusion of contextual dependencies and
current multi-modal cues through a gated enhanced emotion transfer module. Gated EETM explicitly
captures the emotional transfer information, so that the model can strengthen the current cue in the face
of emotional changes rather than relying too much on the historical context, so as to accurately identify the
real emotion-surprise of the subsequent utterance in this case.

5 Conclusions

In order to solve the problem of emotional semantic alignment caused by modal heterogeneity, noise
interference and emotional evolution complexity in dialogue scenes, we propose multi-level dynamic gating
and emotion transfer for multi-modal emotion recognition. The dynamic gating mechanism runs through
the whole process of uni-modal coding, cross-modal alignment and emotion transfer modeling. Firstly, the
Gated Uni-modal Encoder (GUE) is used to suppress the single-mode noise and narrow the heterogeneity
gap, so as to enhance the discrimination of the original features. Secondly, a Gated Attention-based Cross-
Modal Encoder (Gated ACME) is designed to dynamically calibrate the complementary strength of visual
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and audio modalities to the dominant features of the text, and to filter redundant information by combining
feature selection gating. Finally, a Gated Enhanced Emotion Transfer Module (Gated EETM) is introduced
to explicitly model the evolution of emotions by comparative learning, so as to alleviate the conflict between
context dependence and emotional mutation. Experiments show that the accuracy and weighted F1 score
of MDGET-MER on MELD and IEMOCAP dataset are better than the existing comparison model. In
the future, we will explore from the direction of deep integration of multi-modal emotion recognition
and dynamic gating mechanism, and use real-time perception of emotional state to optimize the context
understanding and emotional response of multi-modal empathetic dialogue generation, so as to further
improve the emotional consistency and empathy depth of generated dialogue.
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Notations

The following notations are used in this manuscript:

Notation Meaning

U={u, -, u|U|} A dialogue containing |U| utterance

uj = {ulT, ulV, uf‘} u; is composed of text (T), visual (V) and audio (A) modalities

e The emotional label

X The feature representation of u;

X e R The feature matrixs; n is the number of utterances, d is the feature dimension

[

The feature splicing operation

a(") A sigmoid function

Gy, G, e R"™4 The dynamic gating matrixs

ng € Rdx2d Wg2 e R34 The gated parameter matrixs

b}g, bfg e R4 Learnable parameters

®© Element-by-element multiplication
al) The activation function

HT HYand HA

The final feature matrix
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H,ppe € R A gated weighted fusion feature

|E| The number of emotions

el (el €E) The predicted emotion

n The L2 regularization coefficient

n(i) The number of utterances in the i-th dialogue

N The number of all dialogues in the training set

¥ J The probability distribution of the predicted emotion label of the j-th utterance in the i-

th conversation

Yij The truth label

Girans (i, ) Emotion transfer possibility weight

hi € H and hj; e H' The feature vectors of the i-th and j-th statements

T The gating threshold

z' The probability distribution of the predicted emotion transfer label

L The classification loss

L, Emotion transfer loss

W, The learnable parameters of all gating mechanisms

A A compromise parameter whose value is in the range of [0, 1]

w A set of all learnable parameters except the gating mechanism
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