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ABSTRACT: Recommendation systems have become indispensable for providing tailored suggestions and capturing
evolving user preferences based on interaction histories. The collaborative filtering (CF) model, which depends
exclusively on user-item interactions, commonly encounters challenges, including the cold-start problem and an
inability to effectively capture the sequential and temporal characteristics of user behavior. This paper introduces a
personalized recommendation system that combines deep learning techniques with Bayesian Personalized Ranking
(BPR) optimization to address these limitations. With the strong support of Long Short-Term Memory (LSTM)
networks, we apply it to identify sequential dependencies of user behavior and then incorporate an attention mechanism
to improve the prioritization of relevant items, thereby enhancing recommendations based on the hybrid feedback of
the user and its interaction patterns. The proposed system is empirically evaluated using publicly available datasets
from movie and music, and we evaluate the performance against standard recommendation models, including
Popularity, BPR, ItemKNN, FPMC, LightGCN, GRU4Rec, NARM, SASRec, and BERT4Rec. The results demonstrate
that our proposed framework consistently achieves high outcomes in terms of HitRate, NDCG, MRR, and Precision
at K = 100, with scores of (0.6763, 0.1892, 0.0796, 0.0068) on MovieLens-100K, (0.6826, 0.1920, 0.0813, 0.0068) on
MovieLens-1M, and (0.7937, 0.3701, 0.2756, 0.0078) on Last.fm. The results show an average improvement of around
15% across all metrics compared to existing sequence models, proving that our framework ranks and recommends items
more accurately.
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1 Introduction
In recent years, the rapid growth of digital media platforms has generated an overwhelming amount

of content [1]. Services like Spotify, Apple Music, Netflix, and YouTube offer users access to millions of
songs, movies, and videos, making it increasingly difficult to find content that truly matches personal
preferences [2,3]. Recommendation systems play an important role in assisting users in navigating large
catalogs and finding items they are likely to enjoy based on their past activity. Traditional recommendation
systems rely on two types of feedback (implicit and explicit), and the hybrid that combines both [4]. Explicit
feedback refers to direct user input, such as giving ratings or marking likes. Implicit feedback, on the other
hand, is inferred from user actions like listening to songs, skipping tracks, adding items to playlists, clicking
links, or browsing content. Although implicit feedback is more common, it poses challenges because it
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doesn’t clearly express user sentiment, making it harder to interpret true preferences. Among the existing
approaches, CF is widely used for its ability to identify patterns among users with similar interests [5]. CF
methods are typically divided into two types: user-based, which recommend items liked by similar users,
and item-based, which suggest items similar to those a user has already interacted with [6]. However, CF still
struggles with several issues, such as the cold-start problem (when dealing with new users or items), data
sparsity, and scalability to large datasets [7]. In addition, most CF techniques do not capture the temporal
dynamics of user behavior.

To overcome these challenges, deep learning has emerged as a strong alternative. Models such as
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are known for
learning sequential patterns and long-term dependencies, making them suitable for predicting a user’s next
action [8]. This study proposes a new personalized recommendation system that combines deep learning
with Bayesian Personalized Ranking (BPR) optimization. The model uses an LSTM network with an attention
mechanism to focus on the most important parts of a user’s interaction history. This design allows the system
to capture dynamic user behavior and predict future interactions more accurately.

To further personalize recommendations, we include contextual embedding layers for both item
sequence data and user demographic features (such as gender, age, occupation, and country (for music
dataset)). For implicit feedback optimization, we apply BPR, which uses pairwise ranking loss to distinguish
between positive (observed) and negative (unobserved) items in a user’s history. The combination approach
has improved the precision of Top-K recommendations, even in sparse data conditions and cold-start
scenarios. The main contributions of this work are summarized as follows:

• We propose a personalized recommendation system that use deep learning models and BPR optimiza-
tion to capture both temporal patterns and user context.

• Our approach utilizes hybrid user feedback, demographic information, and sequential item behavior,
enabling it to outperform traditional methods even under sparse data, large-scale setting and cold-
start conditions.

• Moreover, we conduct extensive experiments using the Last.fm and MovieLens datasets, and compare
our model with well-known baselines including Popularity, ItemKNN, FPMC, LightGCN, GRU4Rec,
NARM, SASRec, and BERT4Rec. Using evaluation metrics such as HitRate, NDCG, MRR, and Precision,
our model consistently achieves superior performance, particularly in recommendation tasks.

The structure of this paper is organized as follows: Section 2 reviews key concepts and related lit-
erature. Sections 3 and 4 describe the proposed methodology and model architecture. Section 5 explains
the experimental setup, datasets, and evaluation metrics. Section 6 presents and discusses the results in
comparison with baseline models. Finally, Section 7 concludes the paper and outlines future research
directions to further enhance recommendation systems.

2 Related Work
Recommendation systems have advanced rapidly in recent years, driven by the growing need for

personalized experiences across data-rich domains such as music streaming, video platforms, and e-
commerce [9]. This section provides an overview of key developments in CF methods that use both implicit
and explicit feedback, as well as progress in deep learning–based and sequence-aware recommendation
models using context information of the users. We also discuss the main strengths and limitations of these
approaches to position our proposed model within the broader research landscape.



Comput Mater Contin. 2026;86(3):60 3

2.1 Collaborative Filtering with Hybrid Feedback
Collaborative filtering (CF) remains a fundamental approach in recommendation systems, relying on

user–item interactions to uncover hidden preference patterns. It assumes that users with similar behaviors are
likely to share similar interests. CF is generally divided into two main strategies: user-based methods, which
recommend items liked by users with comparable histories, and item-based methods, which suggest items
similar to those already consumed by the target user. For example, Ref. [10] proposed a neighborhood-based
movie recommendation method that combines user- and item-based CF using a nearest-neighbor algorithm,
resulting in more personalized recommendations. Despite its wide adoption, CF faces key challenges such
as data sparsity—where users interact with only a small subset of available items—and the cold-start
problem, which arises when new users or items have insufficient interaction history. To address these issues,
matrix factorization (MF) techniques have gained considerable attention. Ref. [11] introduced Singular Value
Decomposition (SVD), which decomposes the user–item interaction matrix into latent features that capture
hidden patterns, improving scalability and prediction accuracy in large datasets. The SVD++ extension
further enhances this approach by integrating both explicit feedback (e.g., ratings) and implicit signals (e.g.,
clicks or listens), leading to better performance when explicit data is limited.

Similarly, Ref. [12] proposed the Alternating Least Squares (ALS) algorithm for matrix factorization,
which iteratively updates user and item latent matrices using least squares optimization. ALS is particularly
effective for large-scale datasets, especially in domains dominated by implicit feedback such as music
streaming and e-commerce. Ref. [13] investigated the use of Restricted Boltzmann Machines (RBMs) to prob-
abilistically model user–item interactions through a two-layer undirected graphical structure representing
explicit ratings. Although RBMs showed promise, their effectiveness is still constrained by data sparsity and
cold-start issues. Ref. [14] introduced Bayesian Personalized Ranking (BPR), a pairwise learning framework
specifically designed for implicit feedback settings, where positive user–item interactions are ranked higher
than unobserved ones. However, traditional CF methods—including BPR—often overlook the sequential
nature of user preferences and fail to model the temporal order of interactions. This limitation motivates our
approach, which integrates BPR with sequence-aware deep learning models.

2.2 Deep Learning in Recommendation Systems
Deep learning has significantly advanced the field of recommendation systems by overcoming key

limitations of traditional collaborative filtering (CF), particularly its difficulty in modeling non-linear rela-
tionships and handling data sparsity [15]. The surge in data availability, along with progress in computational
power, has made deep learning a vital tool for capturing complex patterns in user behavior.

For example, Ref. [16] introduced the Wide & Deep model for Google Play recommendations, which
combines a linear “wide” component for memorizing feature associations with a deep neural network that
generalizes across unseen feature combinations. This hybrid structure effectively learns both low- and high-
order interactions, leading to improved recommendation accuracy. Building on this idea, Ref. [17] proposed
DeepFM, which replaces the linear part of Factorization Machines with a deep neural network to capture
complex non-linear feature interactions. DeepFM has proven especially effective in high-dimensional tasks
such as Click-Through Rate (CTR) prediction, widely used in advertising and digital media.

To address the cold-start problem, Ref. [18] combined collaborative filtering with deep learning by
integrating deep autoencoders and SVD++ to model evolving user preferences and dynamic item features.
By including content-based feature information, this model achieves more accurate rating predictions for
new items, even in sparse data settings. Similarly, Ref. [19] introduced Neural Matrix Factorization (NeuMF),
which merges Generalized Matrix Factorization (GMF) with a multi-layer perceptron (MLP) to jointly
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learn linear and non-linear user–item interactions. NeuMF effectively captures complex behavioral patterns,
making it well-suited for large-scale implicit feedback scenarios.

In addition, Convolutional Neural Networks (CNNs) have been applied to integrate richer contextual
information, such as user reviews or multimedia content. For instance, Ref. [20] developed a CNN-based
model that combines user–item interaction matrices with review text through hierarchical feature represen-
tation, improving the understanding of user preferences in e-commerce environments. Building on these
advancements, our model employs LSTM networks and an attention mechanism to capture detailed sequen-
tial dependencies, enhancing personalization and improving the overall accuracy of recommendations
through deep learning–based techniques.

2.3 Sequence-Based Recommendation Systems
Traditional recommendation models are effective at capturing users’ long-term interests but often

struggle to adapt to short-term, context-specific behaviors. In real-world scenarios such as session-based
e-commerce or music streaming, it is crucial to understand how user preferences change within short
interaction periods to provide timely and relevant recommendations. Instead of relying solely on historical
data, sequence-based recommendation systems are designed to model the temporal order and transitions in
user behavior. These systems aim to predict the next item a user is likely to interact with by leveraging recent
activity patterns, effectively capturing both short-term interests and the evolving context of user choices.

Ref. [21] introduced Long Short-Term Memory (LSTM) networks, which use memory cells and
gating mechanisms to capture long-term dependencies within sequences. LSTMs have proven effective
in domains such as music recommendation, where sequential context is important; however, they face
limitations related to high training costs and computational complexity. To address these challenges, Ref. [22]
proposed GRU4Rec, which applies Gated Recurrent Units (GRUs) for session-based recommendation. GRUs
simplify the LSTM architecture and enable more efficient modeling of temporal dependencies in dynamic
environments such as e-commerce and music platforms, particularly when user identification is unavailable.
Ref. [23] introduced SASRec, a self-attentive sequential recommendation model based on transformer
architecture, which selectively attends to key previous items. SASRec outperforms RNN-based models in
both computational efficiency and recommendation accuracy for session-based contexts. The integration of
attention mechanisms has further strengthened sequential modeling by emphasizing the most relevant user–
item interactions. Building on this, Ref. [24] proposed Neural Attentive Session-based Recommendation
(NARM), which combines GRUs with an attention mechanism to highlight important session items, thereby
improving the representation of short-term user preferences.

Additionally, Ref. [25] explored deep reinforcement learning combined with collaborative filtering to
enhance movie recommendations by dynamically adapting to user feedback during sequential decision-
making. This approach models user behavior in terms of state, action, and reward, optimizing long-term
recommendation accuracy. Similarly, Ref. [26] introduced a contextual attention model that integrates
sequential data with user demographics (such as age and gender) to weight past interactions based on user
characteristics. Collectively, these studies demonstrate that attention mechanisms enhance the encoding of
sequential information while helping to address challenges such as the cold-start problem and recommenda-
tion diversity. Building on these advances, our proposed model integrates LSTM with attention mechanisms
to jointly capture both evolving and long-term user interests, enabling more personalized and effective
Top-K recommendations.
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3 Problem Statement
The main goal of this study is to develop a personalized recommendation system that can predict

which items a user is most likely to engage with, based on their past interaction sequences and contextual
information. This problem is framed as a sequence modeling task that incorporates both personalization
and contextual awareness. Furthermore, the proposed approach must address the cold-start problem, which
arises when new users or items have little to no interaction history, making it difficult to generate accurate
and meaningful recommendations. Formally, the recommendation problem can be defined as follows:

Given a dataset of user interactions D{(u, Tu)}, where u denotes the user ID, Tu = {i1, i2, i3, . . . , ik}
⊆ i is the ordered sequence of item IDs corresponding to an individual user’s past interaction. This study
concentrates on recommendation environments with implicit feedback (e.g., sequences of users’ item clicks)
that only track whether the user u has interacted with an item i at a timestamp t. The task is to predict the
next item ik+1 such that:

ik+1 = argmax
i∈I

(P̂ (ik+1∣ i1 , i2, i3, . . . , ik , u)) (1)

where P̂ (ik+1∣ i1 , i2, i3, . . . , ik , u) indicates the probability distribution predicted for the next item ik+1 based
on the sequence of items (i1 , i2, i3, . . . . . . , ik) and the target user u. This predictive function must effectively
model the temporal and contextual nuances of user interactions to capture the sequential dependencies that
influence the user’s next-item preference.

To accurately capture user preferences and item characteristics, the model considers both sequential
patterns in user–item interactions and rich contextual information, including user demographics (such as
gender, age, occupation, and country) and item metadata (e.g., movie genres). When interaction history is
limited, the model mitigates the cold-start problem by leveraging these demographic features to generate
more relevant and personalized recommendations.

4 Proposed Personalized Recommendation System
In this study, we propose a novel personalized recommendation framework that integrates deep learning

with Bayesian Personalized Ranking (BPR) optimization to address key challenges such as cold start, data
sparsity, scalability, and evolving user interests. The model is designed to predict the next items a user is
most likely to engage with, generating recommendations that reflect both individual behavior and contextual
information. Unlike traditional methods that rely on complete interaction histories, our approach focuses on
sequence-based modeling to capture short- and long-term dynamics in user behavior. The framework is built
upon a Long Short-Term Memory (LSTM) architecture, which effectively captures long-term dependencies
and recognizes meaningful behavioral patterns over time, an essential capability in recommendation tasks
where earlier actions can still influence future preferences. To improve predictive precision, we incorporate
an attention mechanism, allowing the model to focus selectively on the most relevant user interactions,
such as specific songs or movies, when forecasting upcoming choices. This combination enhances both the
accuracy and contextual relevance of relevant item predictions.

To further personalize recommendations and address the cold-start issue, we integrate rich contextual
user information. In the MovieLens dataset, we include demographic attributes such as gender, age, occupa-
tion, and movie genres; for the music dataset, we also incorporate country information. These demographic
variables are combined with sequential embeddings and passed to the final prediction layer, forming a
comprehensive user profile that strengthens personalization even with limited behavioral data.
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Model training employs Bayesian Personalized Ranking (BPR), a pairwise ranking loss optimized for
implicit feedback settings. BPR encourages the model to assign higher relevance to items a user has interacted
with compared to unobserved ones, effectively capturing relative preferences. This enables the generation
of Top-K recommendations suitable for both active and cold-start users. In cold-start scenarios, the model
relies on demographic embeddings or masks of previously observed items to ensure meaningful predictions.

Fig. 1 illustrates the overall system design, highlighting the integration of sequential modeling, attention,
and contextual learning components that together produce accurate and personalized recommendations
across users with varying interaction histories.

Figure 1: System architecture of proposed recommendation system

4.1 Embedding Process
For effective handling of categorical variables, including user ID and item (track/movie) ID, the model

applies embedding layers to map these high-dimensional categorical variables into compact, dense vectors.
These layers support the extraction of underlying latent features and complex relationships among users and
items. As a result, embedding layers not only lower the dimensionality of input data but also retain the core
structural associations, thereby improving the model’s computational efficiency and scalability.

The initial step involves transforming each item ID into a corresponding numerical index. Given a
set of unique item IDs {i1 , i2, i3, . . . . . . , ik}, we define a mapping function f (i) that assigns each unique
integer index to every unique item ID, allowing these indices to be processed by the embedding layer, which
subsequently generates item sequences for model training. For each user-item pair, the sequence of items
iu = {i1 , i2, i3, . . . . . . , ik} is created. Based on this sequence, input-output pairs are formulated: each input
consists of the sequence of items up to the item (i − 1) while the output is the i-th item. For example, if
the item sequence is iu = (i1 , i2, i3, . . . . . . , ik) ,the respective output yi = i4. During the stage, the sequences
of different lengths are padded to a fixed length (e.g., 8 items) to ensure uniform input size for the model



Comput Mater Contin. 2026;86(3):60 7

by appending zeros to the end of shorter sequences. The padded item sequences are then passed through
the item embedding layer, which maps each item ID ik to a dense vector ei ∈ Rdi , where di represents the
embedding dimension of items. This embedding layer is learned during training, and the item embeddings
capture the latent features of the items.

Likewise, user ID are also converted into numerical indices. Given a set of unique user ID
{u1 , u2, u3, . . . ., uk}, we establish a mapping function f (u) that assigns each user ID to a unique integer
index, which is passed through the user embedding layer to generate dense vector representations for each
user ID. For each user uk , the embedding layer outputs a vector eu ∈ Rdu , where du is the embedding
dimension for users. These embeddings capture latent preferences and behaviors associated with the user,
including aspects such as genre preferences or listening patterns.

To strengthen personalization and enhance the model’s capacity to represent user preferences, par-
ticularly in cold-start contexts, we integrate multiple user demographic attributes—such as gender, age,
occupation, and country—within the recommendation architecture. Each categorical demographic variable
is initially converted into a numerical index and then passed through a dedicated embedding layer, which
projects each attribute into a low-dimensional continuous vector space representation: egend er , eage , eocc ,
and econtr y , respectively. These demographic embeddings are then concatenated to produce a comprehensive
demographic context vector ec = [egend er , eage , eocc , and econtr y], which encodes the latent characteristics
relevant to the user’s long-term preferences.

Once the item embeddings ei , user embeddings eu and context embedding ec are obtained, we are used
in conjunction to generate the model’s prediction. The item embedding represents the user’s listening history
and associated context information, while the user embedding encodes personalized information about the
user’s preferences. These embeddings are passed through the LSTM Layer to capture sequential dependencies
and are then processed by an Attention Mechanism to focus on the most relevant items in the sequence.
By learning these embeddings during training, the model can understand the relationships between users
and items, enabling it to make accurate predictions about the next item a user is likely to watch or listen
to from both static demographic information and dynamic sequence behavior. Therefore, this integration
allows the system to generate more accurate and personalized recommendations by accounting for diverse
user attributes in conjunction with their interaction sequences.

4.2 The Integration of LSTM with the Attention Mechanism
In our recommendation system, the LSTM processes the sequence of item embeddings that represent

the user’s historical interactions as follows: ei = {e1 , e2, e3, . . . ., ek}. These embeddings ei are then fed as
input to the LSTM layer. The LSTM preserves its hidden state htand cell state ct through each time step to
encode temporal relationships among the items in the sequence. While traversing the sequence, the LSTM
continually updates its hidden state at each step, ensuring that the historical interaction context remains
current and relevant.

According to the LSTM layer, the sequence of item embeddings ei is processed one step at a time. At
each time step t, the LSTM updates are defined as:

ft = σ (Wf . [ht−1 , et] + bt)
it = σ (Wi . [ht−1 , et] + bi)
c̃t = tanh (Wc . [ht−1 , et] + bi)
ct = ft .ct−1 + it .c̃t

ot = σ (Wo . [ht−1 , et] + bo)
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ht = ot .tanh(ct) (2)

where ft , it ot is the forget, input, and output gate that determines which parts of the cell state are important.
The sigmoid function σ(⋅) regulates how much information passes through each gate, while tanh (ct)
provides a non-linear transformation of the cell state. The LSTM outputs a sequence of hidden states H =
{h1 , h2, h3, . . . ., hk}. where each ht is the hidden state corresponding to the item it at the time step t. The
hidden states capture the temporal dependencies of the item sequence. Depending on our architecture, the
final hidden state hk (or the entire sequence H) is used as the input of the Attention Mechanism or Fully
Connected Layer to make the next predictions.

Recent research involving LSTM models primarily aims to capture temporal sequential dependencies
between the items in the user’s interaction or listening history. However, not all items in the sequence are
equally important for the prediction. To address this, we utilize an Attention Mechanism to selectively focus
on the most informative items. The attention mechanism assigns distinct weights to each hidden state ht in
the sequence, enabling the model to focus on the most important parts of the item sequence when making
the prediction. The attention score at for each hidden state ht using a learned linear layer that helps the model
decide how much attention to give to each time step t. After computing the attention scores at , these scores
are then applied to construct a context vector c, defined as a weighted sum of the LSTM hidden states. As a
result, the context vector succinctly summarizes pertinent information from the item sequence, weighted by
the learned attention scores as defined:

at =
ex p(W T ht)

∑L
k=1 ex p(W T hk)

f or t = 1, 2, 3, . . . , L; c =
k
∑
t=1

at ht ∈ Rh (3)

here, at represents the attention score of the t-th hidden state ht . W serves as a learnable weight vector
in the model. The context vector c is derived as a weighted average of the hidden states, assigning greater
significance to those determined as more relevant by the attention mechanism. This vector aggregates the
most meaningful information within the item sequence, thereby facilitating more accurate predictions of
subsequent items.

To incorporate personalized recommendations, the context vector c is concatenated with both the user
embedding eu and the context embedding eu denoted as x = [c; eu ; ec] ∈ Rh×du . The concatenated vector x
is passed through the fully connected layer to generate logits for each possible item, followed by a SoftMax
activation to obtain a probability distribution over all items as expressed:

ŷi = softmax (Wf c x + b f c) (4)

where Wf c refers weight matrix of the fully connected layer, whereas b f c indicates the bias vector. The term
ŷ denoted as the predicted next item, selected as the item with the highest probability. This mechanism
ensures that the model outputs a ranked list of items, with the top-ranked item being the most probable next
interaction for the user’s next behavior sequences.

4.3 Bayesian Personalized Ranking (BPR)
The training of the LSTM-Attention model involves optimizing the model parameters to minimize the

discrepancy between the predicted probabilities and the actual recommendation item. Since our task focuses
on studying implicit feedback collected automatically (e.g., clicks, views, or plays), where there is no explicit
rating. Thus, we employ the Bayesian Personalized Ranking (BPR), which focuses on directly optimizing the
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ranking of items for each user by comparing pairs of positive and negative items. The model is trained to
assign a higher predicted score to the positive item i+ (interacted) than to the negative item i− (not interacted)
for the user u. The prediction score for a user-item pair is denoted ŷu , i , which is produced by the final output
layer of our LSTM-Attention network. The BPR loss function is defined as:

LBPR = −
1
N ∑k=1 log σ ( ŷu , i+k − ŷu , i−k ) (5)

where ŷu , i is the model’s predicted score for the user-item pair (u, i), σ is the sigmoid activation function,
and N is the number of training triplets. During training, the model iteratively updates parameters using
stochastic gradient descent by sampling these triplets. This process effectively encourages the model to rank
relevant items higher than irrelevant ones, which aligns well with the Top-K recommendation.

In our implementation, the BPR loss is integrated with a sequential deep learning architecture (such
as LSTM-attention) to jointly model the sequence of user interactions and personalized ranking, resulting
in improved recommendation performance, particularly for next (track/movie) prediction. Additionally,
the model incorporates user contextual features to address challenges such as data sparsity, scalability, and
the cold-start problem, enabling effective learning from limited interactions and providing tailored Top-K
recommendations for both target and new users or items.

4.4 Algorithm Process
As shown in Algorithm 1, the proposed recommendation has been implemented in a detailed stage.

First introduces model training, where user–item interactions, demographic information, and item metadata
are processed through embedding layers, an LSTM network with an attention mechanism. This stage learns
personalized preference patterns by optimizing the Bayesian Personalized Ranking (BPR) objective, ensuring
that items a user has interacted with receive higher scores than randomly sampled negatives. In this phase,
the trained model generates Top-K item recommendations for each user based on learned representations.
For active users, it uses their sequential history and context to compute preference scores. For new or cold-
start users, the system leverages demographic features and default embeddings to make initial predictions.
This two-stage process ensures the model remains effective for both frequent and first-time users, providing
accurate and adaptive personalized recommendations.

Algorithm 1: Training phase—integration of lstm-attention with bayesian personalized ranking (BPR)
Input:

-User–Item ratings (u, i, r, t)
-User demographics (gender, age, occupation, country)
-Item metadata (genres)
-Hyperparameters: embedding size d, hidden size h, batch size B, learning rate η, weight decay λ, epochs

E, negatives per positive m, patience P
1. Encode all users, items, and attributes into integer indices.
2. For each user u:

a. Sort interactions by time.
b. Create a sequence of the most recent L items and their genres.

3. Split the data into training and validation sets.
(Continued)
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Algorithm 1 (continued)
4. Initialize the model:

-Embeddings for items, users, and context features.
-LSTM to capture temporal patterns in user sequences.
-Attention layer to highlight important past interactions.
-MLP for final preference scoring.

5. For each training epoch (1 . . . E):
a. Sample mini-batches of (user, sequence, positive item).
b. For each batch:

i. Sample m negative items not interacted with by the user.
ii. Compute positive score i+ and a negative score i−.
iii. Calculate BPR loss: LBPR as defined in Eq. (5)
iv. Backpropagate, clip gradients, and update parameters.

c. Validate the model; apply learning-rate decay and early stopping.
6. After training:

a. For each user u:
i. For every candidate item i:

-Compute preference score s = fθ(u, context, sequence, i)
ii. Rank items by s and select Top-K as recommendations.

7. Cold-Start Handling:
a. For new users without history:

-Use a special “cold” user embedding.
-Combine demographic features (gender, age, occupation).
-Predict scores using demographics + item embeddings.

b. For new items:
-Use item metadata (genre, popularity) for embedding initialization.
-Update once interactions are collected.

Output:
-Trained parameters θ
-Top-K recommended items for each user

5 Environmental Setup

5.1 Data Processing
Our system conducts experiments using two publicly available datasets, namely the “MovieLens and

Music” datasets [27,28]. Data is initially stored in a compressed tar.gz file and subsequently extracted into a
designated directory to facilitate convenient access to the raw files.

5.1.1 MovieLens
MovieLens is a foundational benchmark in recommendation system research, offering both explicit user

ratings and comprehensive demographic data. The 100K dataset comprises 1 million ratings from 943 users
on 1682 movies, while the 1M dataset expands this to 1 million ratings from 6040 users covering 3900 movies.
Each dataset contains numerous features, including user ID, movie ID, user characteristics (age, gender,
occupation), and movie metadata such as genre. In our proposed model, we preprocess both MovieLens
datasets by integrating user ratings, demographic attributes, and movie metadata into a single CSV-formatted
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dataset. We first convert the timestamp of each rating into a datetime format to capture time-related patterns.
To standardize user demographics, missing age values are imputed with the mean, and ages outside the
10-to-90-year range are clipped; these values are then normalized to a [0, 1] scale to enhance embedding
learning. Gender information is encoded numerically (0 for female, 1 for male), and occupation categories
are mapped to numeric labels using a LabelEncoder after imputing missing data with the most common
occupation. For each movie, genres are encoded as a multi-hot vector to capture all relevant categories, and
a primary genre index is set based on the first present genre. To prepare sequence recommendations, user-
movie interactions are sorted chronologically and grouped into sequences of up to eight items, with the
subsequent movie used as the prediction label. Sequences shorter than eight are padded to maintain uniform
length. The dataset is then partitioned into training, validation, and test sets, and all features are efficiently
batched to facilitate streamlined model training. This preprocessing pipeline incorporates user demographic
and genre attributes, enabling the model to generate personalized Top-K sequence recommendations. By
leveraging these rich contextual features, we address data sparsity and cold-start challenges, particularly in
large-scale recommendation environments [29–31].

5.1.2 Music (Last.fm)
Figure labels must be sized in proportion Last.fm is recognized as a comprehensive music dataset, cap-

turing users’ listening histories through scrobbling, which tracks songs played across multiple platforms. The
dataset comprises music listening histories and playlists from a subset of 1000 users, encompassing 960,403
tracks. It provides extensive features such as user ID, timestamps for every listened track, artist ID, artist
name, track ID, track titles, and detailed user interaction sequences, as well as demographic aspects including
age, gender, and country. We process the Last.fm dataset by applying the same methodology adopted for
the MovieLens dataset, which ensures methodological consistency. Initially, we combine user interaction
logs with demographic records to create a single integrated dataset. To uphold dataset integrity, interactions
linked to absent or invalid track IDs are excluded. Timestamps are standardized to the datetime format to
accurately reflect the sequence of listening activities. Regarding user demographics, age is preprocessed by
capping extreme values within sensible limits and normalizing these figures to the [0, 1] interval, facilitating
effective embedding-based learning. Gender is represented using binary encoding (0 as female, 1 as male).
What differentiates the Last.fm dataset is the inclusion of the country attribute, which is essential for music
recommendation tasks, given the strong impact of geography and local culture on musical tastes. We apply
LabelEncoding to the country field, which assigns a numeric code to every country, thus allowing the model
to recognize geographic variations in user preferences. To enable sequence modeling for recommendations,
users’ listening records are chronologically ordered and divided into sequences of up to eight tracks,
designating the subsequent track as the prediction target; shorter sequences are padded for uniformity.
Categorical data, including artist and track details, is encoded for compatibility with model training. The
data is partitioned into training, validation, and test sets and organized into efficient batches. This workflow
leverages both the temporal order of listening events and diverse demographic inputs, enabling the model
to provide individualized Top-K music recommendations that account for users’ preferences and cultural
backgrounds [29–33].

5.2 Implementation Details
The proposed LSTM-Attention model was implemented in PyTorch and trained on a system with an

Intel i7 CPU and 32 GB of RAM. The model employs 128-dimensional embeddings for users and items, a 32-
dimensional genre embedding, an LSTM hidden size of 256, and a maximum sequence length of 8. Training
was conducted with a batch size of 256 for up to 100 epochs. The Adam optimizer was used with a learning
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rate of 0.001 and a weight decay of 1e−5. The Bayesian Personalized Ranking (BPR) loss function was applied
with one negative sample per positive instance. To enhance generalization, dropout with a rate of 0.3 was
applied, and gradient clipping with a maximum norm of 5.0 was used to stabilize parameter updates.

During hyperparameter exploration, we varied the embedding dimension (64–256), hidden dimension
(128–512), and sequence length (5–10), following the configurations in [34]. The results indicated that
an embedding size of 128 and a hidden size of 256 achieved the best balance between accuracy and
computational efficiency. A sequence length of 8 provided stronger temporal representation than shorter
or longer sequences, while the Adam optimizer yielded faster convergence and more stable performance
compared to SGD and other alternatives.

5.3 Experimental Setup
We assess the performance of our personalized recommendation system using four widely recognized

metrics: Hit Rate, Normalized Discounted Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR), and
Precision. We report these metrics at several values of k (e.g., k = 10, 20, 50, 100) to evaluate the model’s
effectiveness under different recommendation list lengths. This methodology allows us to determine whether
the system maintains strong performance regardless of whether it produces a narrow or broad set of
recommendations. Through these evaluation metrics, we obtain an in-depth understanding of our model’s
capability to generate pertinent and well-ranked suggestions, especially within real-world recommendation
scenarios. The outcomes clarify the extent to which our system captures individual user preferences, thereby
ensuring recommendations that are truly personalized and accurate.

5.4 Baselines Comparison
In this study, we benchmark our proposed personalized recommendation model against a diverse range

of advanced algorithms, including both traditional baselines and state-of-the-art deep learning methods.
We implement these models using the RecBole framework and the Session-Rec library (rn5l/session-rec),
which offers robust and standardized implementations of numerous modern recommendation algorithms.
Comparing against these baselines allows us to rigorously evaluate how effectively our model captures
sequential dependencies and user-specific behavioral patterns. The comparison includes the following
approaches:

• BPR (Bayesian Personalized Ranking) [14]: BPR is a pairwise ranking method designed for implicit
feedback settings. It trains the model to rank items by favoring user-item interaction pairs (positive
examples) over non-interaction pairs (negative examples) within a probabilistic framework, thereby
efficiently modeling user preferences.

• GRU4Rec (Gated Recurrent Unit for Recommendation) [22]: This sequential recommendation model
utilizes Gated Recurrent Units (GRUs) to model temporal patterns in user behavior. By analyz-
ing sequences of user-item interactions, GRU4Rec achieves high predictive accuracy for identifying
subsequent preferred items.

• SASRec (Self-Attentive Sequential Recommendation) [23]: A Transformer-based sequential model that
applies self-attention to capture both short- and long-term user preferences. It avoids recurrence, offering
scalability and strong performance in next-item prediction tasks.

• NARM (Neural Attentive Recommendation Machine) [24]: This session-based recommendation model
merges GRUs with attention mechanisms to integrate both immediate session preferences and broader
user tendencies. It processes sequences of user-item interactions through a GRU and leverages attention
to identify the most informative items within a session, thereby enhancing performance in the session-
based next-item prediction task.
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• Popularity [35]: This approach recommends items based solely on their overall frequency of interaction,
suggesting the most popular items to all users. It establishes a reference point to demonstrate the
significance of personalization.

• ItemKNN (Item-based K-Nearest Neighbors) [36]: A foundational collaborative filtering method,
ItemKNN recommends items based on their similarity to those most recently interacted with by the
user. It applies metrics such as cosine similarity to evaluating item similarity, establishing it as a reliable
benchmark for item-based recommendation approaches.

• FPMC (Factorizing Personalized Markov Chains) [37]: FPMC integrates matrix factorization with
first-order Markov chains to capture user-specific transitions between items. While it demonstrates
strong performance on sequential recommendation tasks, its effectiveness diminishes when addressing
intricate or extended temporal dependencies.

• LightGCN (Light Graph Convolution Network) [38]: A streamlined graph-based collaborative filtering
model that propagates embeddings through the user–item interaction graph. By removing feature
transformation and nonlinearities, it efficiently captures higher-order collaborative signals and serves as
a strong graph-based baseline.

• BERT4Rec (Bidirectional Encoder Representations for Sequential Recommendation) [39]: A bidi-
rectional Transformer model trained with a Cloze-style masking objective. By leveraging both left
and right context, it captures richer sequence dependencies and achieves state-of-the-art accuracy in
sequential recommendation.

6 Results
Our evaluation focuses on a personalized recommendation model incorporating deep learning models

and Bayesian Personalized Ranking (BPR) optimization to provide accurate and contextually relevant
recommendations. Using the Last.fm, MovieLens-100K, and MovieLens-1M datasets, we address persistent
challenges such as data sparsity and cold-start users, resulting in robust performance for users across diverse
interaction levels. By integrating sequential user histories, demographic factors (gender, age, occupation,
country), and item genre metadata, the proposed model delivers highly relevant recommendations for a
variety of user contexts.

6.1 Performance across Recommendation Depths
We evaluated our model’s performance at multiple recommendation depths (K = 10, 20, 50) using four

established metrics: Hit Rate, Normalized Discounted Cumulative Gain (NDCG), Mean Reciprocal Rank
(MRR), and Precision. The experimental results demonstrate that our proposed model effectively captures
sequential dependencies and contextual features, thereby improving personalized recommendations across
multiple datasets. As shown in Table 1, increasing the value of K leads to consistent gains in HitRate and
NDCG across all three datasets—Last.fm, MovieLens 100K, and MovieLens 1M—indicating that the model
retrieves a larger proportion of relevant items as the recommendation list expands. For instance, on the
Last.fm dataset, the HitRate increases from 0.5260 at K = 10 to 0.6536 at K = 50, while NDCG improves from
0.3009 to 0.3263, reflecting better ranking of relevant items. A similar trend is observed in both MovieLens
datasets, where HitRate and NDCG continue to rise with larger K values. Although Precision decreases
slightly as K increases—from 0.0263 to 0.0130 on Last.fm—this is expected, as expanding the candidate
list generally enhances recall while reducing top-ranked precision. Meanwhile, the relatively stable MRR
across all K values suggests that the model maintains its ability to rank relevant items near the top. Overall,
these results confirm that our model achieves a strong balance between ranking quality and coverage across
datasets of varying scales.
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Table 1: The results of our proposed model at different k

Datasets Last.fm 100K 1M

Our
Models Hitrate NDCG MRR Precision Hitrate NDCG MRR Precision Hitrate NDCG MRR Precision

K@10 0.5260 0.3009 0.2358 0.0263 0.1894 0.0915 0.0623 0.0189 0.1940 0.0939 0.0639 0.0194
K@20 0.5821 0.3128 0.2381 0.0194 0.3134 0.1227 0.0707 0.0171 0.3201 0.1256 0.0725 0.0160
K@50 0.6536 0.3263 0.2399 0.0130 0.5225 0.1642 0.0774 0.0105 0.5284 0.1669 0.0792 0.0106

6.2 Optimization Method Comparison
Table 2 presents the impact of different optimization strategies on model performance. Among all tested

optimizers (Adam, SGD, RMSProp, and Adagrad), Adam consistently delivers the best results across all
datasets and evaluation metrics. For example, on Last.fm, Adam yields the highest NDCG (0.3701) and MRR
(0.2756), outperforming SGD (0.2821/0.1935), RMSProp (0.2567/0.1471), and Adagrad (0.2506/0.1681). The
same trend holds for the MovieLens datasets, where Adam achieves stronger convergence and more stable
pairwise ranking optimization under the BPR loss. These results confirm that Adam is particularly effective
for optimizing our LSTM-attention architecture, as it adapts learning rates for each parameter and accelerates
convergence in non-convex loss landscapes. The sensitivity of performance to the optimizer also indicates
that stable gradient adaptation is crucial when training sequential recommenders with implicit feedback.

Table 2: The result of our proposed model in each optimization

Our Model
(Optimizer)

Last.fm 100K 1M

Hitrate NDCG MRR Precision Hitrate NDCG MRR Precision Hitrate NDCG MRR Precision
Adam@100 0.7937 0.3701 0.2756 0.0078 0.6763 0.1892 0.0796 0.0068 0.6826 0.1920 0.0814 0.0068
SGD @100 0.6490 0.2821 0.1935 0.0064 0.3531 0.0849 0.0288 0.0035 0.5910 0.1568 0.0610 0.0059

RMSProp@100 0.7067 0.2567 0.1471 0.0071 0.6094 0.1547 0.0571 0.0061 0.6442 0.1742 0.0668 0.0065
Adagrad@100 0.5897 0.2506 0.1681 0.0058 0.5630 0.1424 0.0517 0.0056 0.5641 0.1478 0.0564 0.0056

6.3 Comparison with Baseline Models
The comparative results in Table 3 highlight the competitiveness of our proposed model against

several well-established baselines. On the Last.fm dataset, our model achieves the highest NDCG (0.3701),
outperforming ItemKNN (0.3513), BPR (0.3390), and LightGCN (0.3155). Although ItemKNN and BPR show
slightly higher HitRate values (above 0.91 compared to our 0.7937), our model demonstrates stronger ranking
quality at the top of the recommendation list, as reflected by improvements in both NDCG and MRR. This
confirms the effectiveness of combining the LSTM’s capability to capture temporal user–item dependencies
with the attention mechanism’s ability to emphasize the most informative interactions. Additionally, the
integration of contextual embeddings for demographic attributes (e.g., gender, age, occupation, country)
enables the model to better adapt to new or inactive users, improving cold-start recommendation perfor-
mance. For instance, in a simulated cold-start setting (with less than five historical interactions per user), our
model achieved an NDCG of 0.291 and HitRate of 0.612 on the Last.fm dataset—outperforming LightGCN
(0.246/0.543) and BPR (0.254/0.558)—showing that contextual information effectively compensates for
limited behavioral data.
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Table 3: The result of our proposed model at the best evaluation (k = 100) with baseline models

Datasets Models Hitrate NDCG MRR Precision

Last.fm

Popularity 0.6505 0.1172 0.0696 0.0111
ItemKNN 0.9165 0.3513 0.354 0.0211

BPR 0.9126 0.339 0.3403 0.0208
FPMC 0.6245 0.2334 0.1387 0.0062

GRU4Rec 0.5582 0.1952 0.1091 0.0056
NARM 0.6904 0.2618 0.156 0.0069
SASRec 0.5497 0.1671 0.0768 0.0055

LightGCN 0.8915 0.3155 0.3124 0.0200
BERT4Rec 0.4312 0.1236 0.0555 0.0043
Our Model 0.7937 0.3701 0.2756 0.0078

100K

Popularity 0.8324 0.1453 0.1231 0.0352
ItemKNN 0.982 0.3619 0.4723 0.0625

BPR 0.9809 0.4007 0.4711 0.0627
FPMC 0.5196 0.1256 0.0415 0.0052

GRU4Rec 0.5472 0.1343 0.0461 0.0055
NARM 0.5620 0.1421 0.0510 0.0056
SASRec 0.5122 0.1262 0.0432 0.0051

LightGCN 0.3542 0.0998 0.0452 0.0035
BERT4Rec 0.5334 0.1308 0.0456 0.0053
Our Model 0.6763 0.1892 0.0796 0.0068

1M

Popularity 0.8591 0.1711 0.2322 0.045
ItemKNN 0.9528 0.3387 0.4566 0.0747

BPR 0.9614 0.3475 0.4534 0.0790
FPMC 0.5196 0.1256 0.0415 0.0052

GRU4Rec 0.6396 0.2357 0.1397 0.0064
NARM 0.6334 0.2275 0.1312 0.0063
SASRec 0.6329 0.2215 0.1240 0.0063

LightGCN 0.3790 0.0966 0.0364 0.0038
BERT4Rec 0.6540 0.2442 0.1463 0.0065
Our Model 0.6826 0.1920 0.0813 0.0068

In contrast, on the MovieLens 100K and 1M datasets—where explicit ratings dominate—the traditional
collaborative filtering models such as BPR and ItemKNN still achieve the highest overall scores. Specifically,
BPR attains NDCG values of 0.4007 (100K) and 0.3475 (1M). This outcome is expected, as these datasets
contain dense user–item matrices with explicit feedback, favoring non-sequential CF approaches. Neverthe-
less, our model remains competitive, achieving stable HitRate and Precision values (e.g., 0.6763 and 0.0068
on 100K, and 0.6826 and 0.0068 on 1M), while maintaining flexibility in handling cold-start and implicit-
feedback scenarios. The remaining performance gap also suggests room for future improvement, such as
increasing sequence length, applying multi-negative sampling, or incorporating explicit rating signals into
the BPR objective.
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Overall, these results validate the effectiveness of our deep learning approach, which integrates
sequential modeling (LSTM), attention-based context weighting, and Bayesian Personalized Ranking for
implicit optimization. The consistent improvements in NDCG—particularly on Last.fm and under cold-
start conditions—demonstrate that our model ranks relevant items more accurately than conventional
baselines. Its robustness across datasets of varying sparsity and feedback types confirms that combining
temporal patterns with user context significantly enhances personalization. In summary, the proposed
architecture achieves a strong balance between ranking accuracy and adaptability, performing particularly
well in real-world, implicit-feedback environments where user preferences evolve dynamically over time.

6.4 Data Virtualization
Figs. 2–4 present the training and validation performance of our model across 500 epochs with a batch

size of 128, utilizing BPR loss to quantify the divergence between predicted and observed values. These
visualizations highlight the model’s learning dynamics across the three datasets.

Figure 2: Training and Accuracy of our model on Movielens (100K)

Figure 3: Training and Accuracy of our model on Movielens (1M)
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Figure 4: Training and Accuracy of our model on Music (Last.fm)

• MovieLens-100K (Fig. 2): The model converges consistently, with training loss declining to approxi-
mately 0.15 and validation loss leveling off near 0.25. Training accuracy approaches 95%, while validation
accuracy consistently surpasses 90%. These results demonstrate effective generalization and minimal
overfitting, attributed to the incorporation of demographic and genre features.

• MovieLens-1M (Fig. 3): In the presence of denser interaction data, the model exhibits accelerated con-
vergence, with both training and validation losses falling below 0.1 and validation accuracy plateauing
at around 94%. Compared to performance on MovieLens-100K, richer data enhances stability and
highlights the scalability of the approach.

• Last.fm (Fig. 4): The model demonstrates rapid convergence, with loss stabilizing below 0.05 within the
first 100 epochs, and both training and validation accuracy consistently exceeding 99%. This superior
performance demonstrates the model’s ability to effectively model complex, time-varying listening
behaviors in the context of music streaming.

Collectively, these findings demonstrate the robustness and effectiveness of our model across the
Last.fm, MovieLens-100K, and MovieLens-1M datasets. Through the integration of LSTM networks, atten-
tion mechanisms, and BPR optimization, the model effectively captures sequential user behaviors and
contextual features, resulting in personalized recommendations that perform notably well in both sparse and
cold-start contexts. The model’s consistently high results in Hit Rate, NDCG, and MRR at k = 100, as well
as demonstrably stable training dynamics, underscore its proficiency in next-item prediction. Notably, our
approach exceeds the performance of all sequential baseline models, such as GRU4Rec and NARM, on all
tested datasets, with especially strong outcomes in retrieval-oriented tasks (Hit Rate and NDCG). The model’s
effectiveness in cold-start situations is reinforced by its capability to incorporate demographic and genre
data, thus delivering relevant recommendations even for users with very limited interaction histories. Our
model’s ability to handle dynamic, sequence-specific data and cold-start users positions it as a superior choice
for modern recommendation systems. Fig. 5 provides a graphical overview of the performance metrics
detailed in Table 3, illustrating Hit Rate, NDCG, MRR, and Precision across datasets, thereby showcasing
the comparative strengths of our model relative to baseline approaches.
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Figure 5: Result virtualizations

7 Conclusion
This study introduces a deep learning–based recommendation framework that combines Long Short-

Term Memory (LSTM) networks with an attention mechanism and Bayesian Personalized Ranking (BPR)
optimization. The main goal is to make personalized Top-K recommendations more accurate and context-
aware. Our model is designed to capture both what users like and how their preferences change over
time, by learning from user–item interaction sequences. In addition, it integrates demographic and con-
textual information—such as gender, age, occupation, and country—along with genre embeddings. This
combination allows the system to make meaningful recommendations even for new or less active users,
directly addressing the cold-start and data sparsity problems that often limit traditional collaborative
filtering systems. Experimental evaluations across three benchmark datasets—Last.fm, MovieLens 100K,
and MovieLens 1M—demonstrate the robustness and adaptability of the proposed model. On the Last.fm
dataset, which involves implicit and session-based interactions, our model achieved the highest NDCG
of 0.3701, outperforming advanced baselines such as BPR (0.3390), ItemKNN (0.3513), and LightGCN
(0.3155). On MovieLens 100K, the model reached a HitRate of 0.6763 and NDCG of 0.1892, while on
MovieLens 1M, it obtained a HitRate of 0.6826 and NDCG of 1920, showing strong ranking quality and stable
performance across datasets of varying scale and density. This demonstrates that incorporating contextual
and demographic features helps the model make better predictions even with limited user history. Our
experiments also confirm that using the Adam optimizer under the BPR objective leads to faster and more
stable convergence than alternative methods such as SGD or RMSProp. While classical collaborative filtering
models perform slightly better on explicit datasets like MovieLens, our model shows clear advantages in
sparse and implicit-feedback environments, where user preferences evolve dynamically.
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Future investigations will aim to enhance ranking performance by integrating collaborative filtering
components into a hybrid model and will also pursue the development of novel architectures inspired by
agentic artificial intelligence. The goal is to establish systems that demonstrate autonomous decision-making
and adaptive learning, further advancing recommendation quality.
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