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ABSTRACT: To enhance speech emotion recognition capability, this study constructs a speech emotion recognition
model integrating the adaptive acoustic mixup (AAM) and improved coordinate and shuffle attention (ICASA)
methods. The AAM method optimizes data augmentation by combining a sample selection strategy and dynamic
interpolation coefficients, thus enabling information fusion of speech data with different emotions at the acoustic
level. The ICASA method enhances feature extraction capability through dynamic fusion of the improved coordi-
nate attention (ICA) and shuffle attention (SA) techniques. The ICA technique reduces computational overhead by
employing depth-separable convolution and an h-swish activation function and captures long-range dependencies of
multi-scale time-frequency features using the attention weights. The SA technique promotes feature interaction through
channel shuffling, which helps the model learn richer and more discriminative emotional features. Experimental results
demonstrate that, compared to the baseline model, the proposed model improves the weighted accuracy by 5.42%
and 4.54%, and the unweighted accuracy by 3.37% and 3.85% on the IEMOCAP and RAVDESS datasets, respectively.
These improvements were confirmed to be statistically significant by independent samples t-tests, further supporting
the practical reliability and applicability of the proposed model in real-world emotion-aware speech systems.

KEYWORDS: Speech emotion recognition; adaptive acoustic mixup enhancement; improved coordinate attention;
shuffle attention; attention mechanism; deep learning

1 Introduction
Speech emotion recognition (SER) is a core technology of intelligent interaction systems and has crucial

application value in the fields of affective computing and human–machine dialogue. The SER methods
analyze speech waveforms, extract features, and classify them into corresponding emotional categories, thus
helping computers to understand and respond better to human emotional expressions.

Before the rise of deep learning, SER primarily relied on handcrafted acoustic features such as mel
frequency cepstral coefficient (MFCC), pitch, and formants, along with standardized feature sets like IS09
and eGeMAPS [1]. Traditional classifiers including Support Vector Machines (SVM), Gaussian Mixture
Models (GMM), and Hidden Markov Models (HMM) [2,3] were then used for emotion classification. While
these approaches achieved certain success on small-scale datasets, they heavily depended on manual feature
engineering, limiting their ability to automatically capture complex emotional patterns. Moreover, they
exhibited restricted capacity in modeling nonlinear feature relationships and contextual dependencies [4].
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With the advent of deep learning, SER has entered the era of end-to-end learning. Convolutional Neural
Networks (CNNs) have been widely adopted due to their strong local feature extraction capabilities [5,6],
while Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), have become mainstream for their proficiency in modeling temporal sequences [7].
Multi-level fusion strategies have emerged to combine spatial and temporal features, with hybrid CNN-
LSTM models showing particular effectiveness [8]. To improve feature representation quality, attention
mechanisms have been introduced to enhance feature fusion and capture global dependencies [9]. Recently,
advanced architectures including Transformer models have been increasingly adopted to capture multi-scale
information and long-range dependencies [10].

Recently, the field has witnessed a paradigm shift towards self-supervised learning and large-scale
pretrained speech encoders. Wav2vec 2.0 [11] pioneered contrastive self-supervised pretraining, achieving
superior SER performance when fine-tuned on benchmark datasets [12]. HuBERT [13] further advanced
speech representation learning through masked prediction tasks. In parallel, multimodal SER has gained
momentum by integrating audio, visual, and textual information, with recent works exploring cross-
modal attention mechanisms [14] and transformer-based joint learning approaches. Advanced multimodal
frameworks have also emerged that employ hierarchical fusion architectures to systematically integrate
diverse modalities [15], demonstrating the potential of automated optimization in multimodal emotion
recognition systems.

Despite these advances, SER still faces persistent challenges such as limited training data, class
imbalance, and inadequate modeling of fine-grained emotional cues. Traditional data augmentation tech-
niques, including noise injection and time-domain transformations, can increase data diversity but often
distort emotion-related acoustic features [16]. Interpolation-based methods like Mixup [17] may introduce
ambiguous emotional cues by indiscriminately mixing samples, hindering robust feature learning. More-
over, existing attention mechanisms—though widely adopted—often incur high computational costs and
limited adaptability [18]. Approaches such as SE [19] and CA [20] rely on fixed architectures that restrict
adaptive weighting and fail to capture cross-channel dependencies, thereby limiting the modeling of critical
emotional frequency components. These issues highlight the necessity of emotion-preserving augmentation
strategies and flexible attention modules that jointly leverage global context modeling and fine-grained
channel interaction.

To address the limitations of existing data augmentation and attention mechanisms in SER, this
study proposes a novel model named AAM-ICASA-MACNN, built upon a multi-attention convolutional
neural network architecture. The model integrates two key components: the Adaptive Acoustic Mixup
(AAM) module and the Improved Coordinate and Shuffle Attention (ICASA) mechanism. Specifically,
AAM enhances training data by performing emotion-consistent interpolation of features and labels, guided
by similarity-based sample selection and dynamic interpolation coefficients. This strategy enriches sample
diversity and improves model generalization while preserving emotion-related acoustic cues. Meanwhile,
ICASA combines improved coordinate attention (ICA) and shuffle attention (SA) [21] to enhance feature
representation. ICA replaces traditional convolutions with depthwise separable convolutions [22] and
introduces an adaptive dimensionality reduction strategy that dynamically adjusts channel weights based
on the importance of input features, thereby reducing computational overhead and boosting expressive
power. SA further promotes fine-grained cross-channel interactions through channel grouping and shuffling,
effectively capturing the nuanced relationships between fundamental frequency trajectories and formant
structures in speech signals.
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The main contributions of this work are as follows.

• We propose a novel SER model, AAM-ICASA-MACNN, that integrates acoustic-aware data augmenta-
tion and improved attention mechanisms to enhance generalization and emotional feature learning.

• We design an AAM strategy that performs similarity-guided and dynamically weighted Mixup, effec-
tively increasing data diversity and mitigating class imbalance without compromising emotional fidelity.

• We develop an ICASA mechanism that fuses ICA and SA to capture global dependencies and fine-
grained channel interactions with reduced computational cost, yielding superior representation learning
for emotion recognition.

The rest of this paper is organized as follows. Section 2 introduces the proposed AAM-ICASA-MACNN
model in detail, explaining the design of the AAM strategy, the ICASA mechanism, and their integration
into the MACNN architecture which serves as the baseline model. Section 3 presents the experimental
setup, results, and analysis conducted on the IEMOCAP and RAVDESS datasets. Finally, Section 4 draws
conclusions and outlines future research directions.

2 System Model
The overall architecture of the proposed AAM-ICASA-MACNN model is presented in Fig. 1. First,

the AAM method is used to enhance the input data to improve data diversity and robustness. Next, the
enhanced data are fed to the feature extraction network to conduct in-depth feature learning using the input
MFCC [23]. The network starts with two parallel convolutional layers, Conv1a and Conv1b, that extract
horizontal and vertical texture information, respectively. Then, the feature representations are processed
through a series of convolutional layers and ICASA modules to extract richer features gradually. Afterward,
the features are passed to the attention layer, and the feature representation is further optimized using a
multi-head fusion mechanism. Finally, the final decision output for emotion classification is obtained by the
fully connected (FC) layer.
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Figure 1: The structure of the SER system based on the AAM-ICASA-MACNN model

Specific settings of the convolutional layers are provided in Table 1. A batch normalization (BN) layer
and a ReLU non-linear transformation unit are added after each convolutional layer. In addition, after the
Conv2 and Conv3 layers, a max-pooling operation with a kernel size of two is introduced to reduce the
feature map’s spatial size, thus improving the model’s computational efficiency.
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Table 1: Settings of convolutional layers

Layer Kernel size, stride In/Out channels
Conv1a (10, 2), stride = 1 1/8
Conv1b (2, 8), stride = 1 1/8
Conv2 (3, 3), stride = 1 16/32
Conv3 (3, 3), stride = 1 32/48
Conv4 (3, 3), stride = 1 48/64
Conv5 (3, 3), stride = 1 64/80

2.1 Adaptive Acoustic Mixup (AAM) Method
To improve the model’s generalization ability, this paper employs the Adaptive Acoustic Mixup (AAM)

method to increase data diversity and optimize the model training process. Compared with the traditional
MixUp data augmentation method, the AAM method introduces two key factors, namely acoustic similarity
and classification difficulty, during the sample mixing process to achieve a more targeted augmentation
strategy. The specific procedure is shown in Algorithm 1.

The specific steps of the AAM method are as follows.
Step 1: Acoustic Similarity Calculation.
Given (x1 , y1) and (x2, y2), where x1 and x2 are training sample vectors (e.g., MFCC features), and y1

and y2 are their corresponding labels. The AAM method first calculates the cosine similarity between the
two vectors in the feature space as an acoustic similarity score:

sim(x1 , x2) =
x1 ⋅ x2

∥x1∥ ⋅ ∥x2∥
(1)

when sim(x1 , x2) > T (where T is the similarity threshold), the two samples are considered acoustically
similar and selected for mixing. This filtering ensures that only emotionally compatible utterances are used
for interpolation.

Acoustic similarity between utterances is evaluated on MFCC features, which effectively capture
prosodic and spectral information relevant to emotional expression. Utterances with similar acoustic
patterns are considered to share emotional proximity. Within each mini-batch, (same-emotion) and negative
(different-emotion) sample pairs are randomly selected for similarity computation to maintain a balanced
emotional distribution.

Step 2: Classification Difficulty Calculation.
To guide the interpolation toward more informative regions of the data space, the classification difficulty

of each sample is estimated using its cross-entropy loss:

d (x1) = CrossEntropy (y1 , ŷ1) , d (x2) = CrossEntropy (y2, ŷ2) (2)

where ŷ1 and ŷ2 are the model predictions at the current training epoch. A higher d(x) indicates that the
model finds the sample more difficult to classify (i.e., a “harder” sample), while a lower d(x) represents an
“easier” one. These difficulty scores are later used to adaptively determine the interpolation coefficient λ in
Step 3.
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Step 3: Interpolation Coefficient Determination.
The interpolation coefficient λ is adaptively computed based on the classification difficulty difference:

λ = 1
1 + exp (α (d(x1) − d(x2)))

(3)

where α is a hyperparameter controlling the sensitivity of λ to difficulty differences. The sigmoid formu-
lation naturally centers λ around 0.5, adaptively balancing the contributions of harder and easier samples
during interpolation.

Step 4: New Training Sample Generation.
New training samples are generated via linear interpolation:

x̃ = λx1 + (1 − λ)x2, ỹ = λy1 + (1 − λ)y2 (4)

where x̃ and ỹ denote the newly generated feature and label, respectively. The mixed pairs (x̃ , ỹ) are added
to the training set to enhance data diversity and improve generalization.

Algorithm 1: Adaptive Acoustic Mixup (AAM)
Require: Training batch B = {(xi , yi)}N

i=1, model fθ , similarity threshold T, difficulty sensitivity α
Ensure: Augmented batch Baug

1: Baug ← B {Initialize with original samples}
2: for each (xi , yi) ∈ B do
3: C ← ∅ {Step 1: Filter candidate pairs by acoustic similarity}
4: for each (x j , y j) ∈ B where j ≠ i do
5: Compute sim(xi , x j) via Eq.~(1)
6: if sim(xi , x j) > T then
7: C ← C ∪ {(x j , y j)}
8: end if
9: end for
10: if C ≠ ∅ then
11: Randomly sample (x j , y j) from C
12: Compute d(xi) ← CrossEntropy(yi , fθ(xi)) {Step 2: Classification difficulty}
13: Compute d(x j) ← CrossEntropy(y j , fθ(x j))
14: Compute λ ← 1

1+exp(α(d(xi)−d(x j)))
{Step 3: Difficulty-based weighting}

15: x̃ ← λxi + (1 − λ)x j {Step 4: Linear interpolation}
16: ỹ ← λyi + (1 − λ)y j
17: Baug ← Baug ∪ {(x̃ , ỹ)}
18: end if
19: end for
20: return Baug

2.2 ICASA Mechanism
This study proposes an improved dual-path attention mechanism named ICASA, aiming to improve

the effectiveness of emotional feature capturing from speech signals. The ICASA mechanism combines the
improved coordinate attention and shuffle attention strategies and achieves effective collaboration of the
two attention features through the adaptive fusion of learnable weight parameters. Different from using the
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fixed fusion coefficients set manually, this study introduces β as an end-to-end learnable parameter, directly
embedding it into the model for joint optimization without relying on additional parameter generation
modules. The specific calculation method is as follows:

ICASA(x) = β ⋅ ICA(x) + (1 − β) ⋅ SA(x) (5)

where β is a learnable weight parameter with an initial value of 0.5, indicating that the initial contributions
of the two attention modules are equal.

Channel shuffling is used to enhance the cross-channel information interaction, and the optimized
attention mechanism is employed to enhance the fusion of global and local features.

2.2.1 ICA Module
Based on the coordinate attention mechanism, this study designs an improved coordinate attention

module, called the ICA module. The CA module can effectively fuse feature information in the horizontal and
vertical directions by introducing a directional attention mechanism, thus enhancing the spatiotemporal fea-
ture modeling ability of SER. However, the CA faces certain limitations when processing high-dimensional
and complex speech features, particularly in deep networks, where insufficient feature interaction limits the
modeling effect of fine-grained emotional information. To solve these problems, the proposed ICA module
adds depth separable convolution on the CA model, decomposing the traditional convolution operation
into depth- and point-wise convolutions, thus reducing computational costs while retaining rich feature
information. In addition, the ICA module combines an efficient h_swish activation function to enhance the
non-linear expression ability of the model and optimize feature interaction and information flow, achieving
efficient and accurate enhancement of speech emotion features. The structure of the ICA module is displayed
in Fig. 2.
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Figure 2: The structure of the ICA model

The operation of the ICA module is as follows.
(1). Coordinate Information Embedding: Global average pooling is performed on the input feature map

along the horizontal (time-domain) and vertical (frequency-domain) directions to aggregate the feature
information in the two directions, generating two feature maps with the sizes of C ×H × 1 and C × 1 ×W .
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The specific formulae are as follows:

Zh
c =

1
W

W−1
∑
i=0

xc(h, i) (6)

Zw
c =

1
H

H−1
∑
j=0

xc( j, w) (7)

where W and H represent the width and height of the feature map coordinates, respectively; and c is the
channel dimension component, which is used to describe the distribution characteristics of the feature map
in the channel direction.

(2). Feature Processing: The pooled features are concatenated in the channel dimension, and then depth-
separable convolution is used for dimensionality reduction, and the h_swish activation function is selected for
non-linear activation of the concatenated features to generate a compact feature representation with global
perception ability, which can be expressed as follows:

f = δ (F1 ([zh , zw])) (8)

where δ represents the depth-separable convolution transformation, F1 is the h_swish activation function,
[zh , zw] indicates the concatenation operation of feature maps, and f is the intermediate feature mapping in
the horizontal and vertical directions.

Depth-separable convolution is an important component of lightweight neural networks and can
efficiently extract emotional features in SER tasks while reducing computational costs. Its core idea is
to split the traditional convolution into two stages. In the first stage, depth-wise convolution performs
convolution independently on each speech feature channel in the spatial dimension, capturing local time-
frequency patterns at the frame level and strengthening short-term dynamic features. In the second stage,
point-wise convolution uses a 1 × 1 ×M convolution kernel, where M represents the input feature channel
dimension, to establish emotional correlations in the channel dimension, thus enhancing the cross-channel
feature interaction, which allows for more accurate modeling of speech emotions. The two-stage processing
mechanism is illustrated in Fig. 3.

Pointwise ConvolutionDepthwise Convolution

Channel input Filters Feature map Filters Feature map

Pointwise ConvolutionDepthwise Convolution

Channel input Filters Feature map Filters Feature map

Figure 3: Illustration of the depth-separable convolution

(3). Attention Weight Generation: An input feature tensor f is split into two separate tensors, denoted
by f h and f w , along the spatial dimension, and 1 × 1 convolutions are used to generate directional atten-
tion weights to capture important features in the time-domain and frequency domains, respectively. The
representation ability of the input feature map is enhanced through element-wise weighting. This can be
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mathematically expressed as follows:

gh = σ (Fh ( f h)) (9)
gw = σ (Fw ( f w)) (10)

where gh and gw represent the weight attention values, σ is the activation function, f h and f w are the feature
map tensors, F h and Fw denote 1 × 1 convolutions.

The final output of the ICA module is expressed by:

yc(i , j) = xc(i , j) × gh
c (i) × gw

c ( j) (11)

where xc(i , j) is the input feature map, and gw
c ( j) and gh

c ( j) are the attention weights in the vertical and
horizontal directions, respectively.

2.2.2 SA Module
To improve the model’s performance in SER tasks, this study adopts the SA mechanism to enhance

the fluidity and interaction ability of information between channels. The SA module uses a grouping
processing strategy to model speech features hierarchically. First, the input features are divided into multiple
groups, inside each of which the shuffle unit dynamically combines the channel and spatial two-dimensional
attention mechanisms to simultaneously achieve background noise suppression and emotional saliency
region enhancement. Next, the multi-group features are aggregated and reorganized. Then, all sub-features
are summarized, and a channel shuffle operation is performed to promote complementary fusion between
heterogeneous features, which enhances both the robustness of feature representation and the efficiency
of information transfer while improving the accuracy of speech emotion classification. The SA module’s
structure is shown in Fig. 4.

Figure 4: The structure of the SA model

The specific operational principle of the SA model is as follows. For an input feature map X ∈ RC×H×W ,
where C, H and W represent the number of channels, spatial height, and width respectively, the SA
module first divides X into G groups along the channel dimension, that is, X = [X1 , ⋅ ⋅ ⋅ , Xk , ⋅ ⋅ ⋅ , XG], where
X ∈ RC/G×H×W ; the number of channels, height, and width of any grouped feature Xk are denoted by C/G,
H, and W, respectively. During the training process, each sub-feature vector Xk will gradually focuses on
key acoustic patterns using the progressive learning mechanism. On this basis, the attention module can
dynamically assign weights to highlight key features. Specifically, at the initial stage of each attention unit, the
input is divided into two branches along the channel dimension, that is, Xk1 , Xk2 ∈ RC/G×H×W . The channel
branch is responsible for analyzing the correlations between different channels, and the spatial branch focuses
on the position information on the feature map.
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In the channel attention branch, first, a global average pooling operation is used to compress the features
along the channel axis. By aggregating the global response information in the spatial dimension, a channel
statistical vector s ∈ RC/2G×1×1 is generated. This operation encodes multi-dimensional spatial information
into a channel-level global representation as follows:

s = Fg p(Xk1) =
1

H ×W

H
∑
i=1

W
∑
j=1

Xk1(i , j) (12)

Then, a linear transformation Fc is perform on this representation, and it is activated using the sigmoid
function. Finally, the generated channel weights are applied to X

′

k1, which is expressed by:

X′k1 = σ(Fc(s)) × Xk1 = σ(W1 ⋅ s + b1) × Xk1 (13)

where W1 ∈ RC/2G×1×1 and b1 ∈ RC/2G×1×1 are the weight and bias of s, respectively, and σ (⋅) denotes the
sigmoid operation.

In the spatial attention branch, first, a group normalization (GN) operation is performed on input
feature tensor Xk2. The statistical distribution features in the spatial dimension are extracted by the channel
grouping method. Further, a feature enhancement function Fc (x) is introduced to perform non-linear
mapping enhancement on an optimized feature X

′

k2 and dynamically adjust the spatial weight distribution.
The final spatial attention output is defined by:

X′k2 = σ(W2 ⋅GN(Xk2) + b2) × Xk2 (14)

where W2 and b2 are parameters with a shape C/2G × 1 × 1.
Then, Xk1 and Xk2 are superimposed so that the number of output channels is equal to the number of

input channels, that is X
′

k = [X
′

k1 , X
′

k2] ∈ RC/G×H×W . Finally, the information interaction between different
groups is realized through the channel shuffle operation, thus completing the aggregation of all sub-features.

3 Analysis of Experimental Results

3.1 Dataset Introduction
The speech emotion datasets used in this study included IEMOCAP [24] and RAVDESS [25] datasets.

The IEMOCAP dataset was approximately 12 h long and divided into 5 parts. Each dialogue was performed
by an actor and an actress, with a total of 10 actors participating. The dataset was further divided into two
major parts, “impro” (improvised performance) and “script” (scripted reading), based on whether the actors
read the script. In the SER task, actors could express emotions more freely during improvised performances
without the constraints of scripted reading. Therefore, this study selected four representative emotions,
neutral, happy, sad, and angry, from the “impro” part for in-depth research. The specific emotional categories
and their numbers of samples are shown in Table 2.

The RAVDESS dataset contains 1440 utterances from 24 professional actors (12 males and 12 females).
The actors read the matching words with a neutral North American accent, covering emotions including
neutral, calm, happy, sad, fearful, angry, surprised, and disgusted. Each emotion was expressed at two
different intensity levels, and each speech clip lasts for 3 s. The specific emotional categories and the number
of samples are presented in Table 3.
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Table 2: Number of sentences for different emotional categories in the IEMOCAP dataset

Emotional category Number of utterances Proportion (%)
Neutral 1708 30.88
Happy 1636 29.58

Sad 1084 19.60
Angry 1103 19.94
Total 5531 100.00

Table 3: Number of sentences for different emotional categories in the RAVDESS dataset

Emotional category Number of utterances Proportion (%)
Neutral 96 6.69
Calm 192 13.33
Happy 192 13.33

Sad 192 13.33
Fearful 192 13.33
Angry 192 13.33

Surprised 192 13.33
Disgusted 192 13.33

Total 1440 100.00

To ensure leak-resistant evaluation, we used speaker-independent partitioning. For IEMOCAP, session-
based cross-validation was applied, using each session once as test and the remaining four for training,
with results averaged over five folds. For RAVDESS, 6-fold speaker-independent cross-validation was used,
holding out four speakers per fold (2 male, 2 female; 240 utterances) for testing, and training on the
remaining 20 speakers (1200 utterances), with fold-averaged results. This setup prevents speaker overlap,
ensures reliable generalization assessment, and maintains gender balance. All reported metrics, including
prior improvements, are based on this evaluation.

3.2 Experimental Setup
All experiments were implemented in PyTorch 2.1 (FP32) with CUDA 12.1 and cuDNN 8.9 on a single

NVIDIA RTX 3090 GPU. MFCC features (39-dimensional: 13 static coefficients plus first- and second-order
derivatives) were extracted using 26 Mel filter banks, 25 ms Hamming window, and 10 ms frame shift. To
handle variable-length utterances, a segment-based strategy was adopted (Algorithm 2) [26]. Each utterance
was divided into 2-s windows with 1-s stride during training (50% overlap) and 0.4-s stride during testing
(80% overlap) for denser temporal sampling and more robust aggregation. Each segment yields 200 frames
(2 s ÷ 10 ms) and is zero-padded to this length if needed, producing uniform inputs of shape (B, 1, 39,
200). All segments from the same utterance remain within the same fold to prevent information leakage.
During training, overlapping segments share the same label but are processed independently with separate
loss and gradient updates; batches are randomly shuffled across utterances to reduce trivial intra-utterance
correlations. During inference, segment predictions are averaged via mean pooling for the final decision.
Training used batch size 32, learning rate 1e–3, Adam optimizer (weight decay 1e–6), and 60 epochs. ICASA
hyperparameters include group count G = 4, CoordAtt reduction ratio r = 32, 4-head attention fused by
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linear transformation and weighted averaging, residual connections, and layer normalization. Random seeds
for Python, NumPy, and PyTorch were fixed at 987,654, with cuDNN deterministic mode enabled and
benchmark mode disabled.

For computational efficiency evaluation, all model variants used identical MFCC preprocessing and
input dimensions (39 × 200). All latency measurements were conducted on GPU unless otherwise stated.
Inference latency was measured with batch size 1 using 100 warm-up runs followed by 1000 timed runs, with
CUDA-synchronized wall-clock measurements excluding I/O operations.

Algorithm 2: Utterance segmentation and preprocessing
1: Training: For each utterance u with label y:
2: Segment into 2 s windows (1 s stride), zero-pad if <2 s
3: Extract MFCC→ (39, ∼200), zero-pad to (39, 200), assign label y
4: Testing: For each utterance u:
5: Segment into 2 s windows (0.4 s stride)
6: Extract MFCC→ (39, ∼200), zero-pad to (39, 200)
7: Predict: ps =Model(s), Final: ŷ = argmax(mean({ps}))

3.3 Evaluation Indicators
In this study, three standard metrics were employed to comprehensively evaluate the performance of

the proposed model: weighted accuracy (WA), unweighted accuracy (UA), and F1-score (F1).
WA represents the overall classification accuracy across all samples, with each class weighted by its

sample size:

WA = ∑
k
i=1 TPi

∑k
i=1 ni

(15)

where ni = TPi + FNi denotes the number of samples in class i.
UA evaluates the average per-class recall, mitigating the impact of class imbalance and reflecting the

model’s generalization ability across categories:

UA = 1
k

k
∑
i=1

TPi

ni
(16)

F1-score is the harmonic mean of precision and recall and is particularly useful for imbalanced
classification tasks. For each class i:

Precisioni =
TPi

TPi + FPi
, Recalli =

TPi

TPi + FNi
, F1i =

2 × Precisioni × Recalli

Precisioni + Recalli
(17)

Per-class F1-scores are reported for each emotion category to provide detailed performance analysis
across different emotional states.

The meanings of TP, FP, FN, and TN are summarized in Table 4.
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Table 4: Confusion matrix for class i in speech emotion recognition

Actual Predicted

Positive (Class i) Negative (Others)
Positive (Class i) True Positive (TPi ) False Negative (FNi )
Negative (Others) False Positive (FPi ) True Negative (TNi)

3.4 Result Analysis
3.4.1 AAM Role in Data Augmentation and Parameter Analysis

To systematically verify the effectiveness and applicability of the AAM method in data augmentation,
this study conducted four types of experiments: (1) validating whether MFCC-based acoustic similarity
correlates with emotional proximity by analyzing label match rates under different thresholds T; (2)
examining how variations in the acoustic similarity threshold T influence the model’s effectiveness, thereby
evaluating the robustness of AAM to this key parameter; (3) analyzing the impact of the interpolation
coefficient sensitivity α on model performance; (4) performing ablation studies including random pairing of
samples without considering acoustic similarity and removing sample difficulty weighting; and (5) evaluating
the combined effect of AAM with mainstream data augmentation methods such as random cropping
(RC) [27], MixUp, SpecAugment, and SPA [28], further demonstrating the versatility and extensibility of
AAM. Acoustic similarity serves as a practical proxy to approximate emotional proximity, as utterances with
similar acoustic patterns—such as pitch trajectories and formant structures—are often emotionally related.

The specific experimental procedure was as follows.
(1) Correlation Analysis between Acoustic Similarity and Emotion Labels
To validate that MFCC-based acoustic similarity reflects emotion-relevant information, we analyzed

utterance pairs from IEMOCAP and measured their cosine similarity in MFCC space. Table 5 shows that as
the similarity threshold T increases, the proportion of pairs sharing the same emotion label (label match rate)
rises consistently, reaching 75.4% at T = 0.7—far above random chance (20%). This confirms that MFCC
similarity effectively captures emotion-related cues. Considering the trade-off between emotion consistency
and sample coverage, we adopt T = 0.7 as the default setting for Adaptive Acoustic Mixup.

Table 5: Acoustic similarity threshold vs. emotion label consistency (%)

Threshold T Label match rate
0.1 52.3
0.3 60.8
0.5 68.7
0.7 75.4
0.9 82.1

Although the label match rate at a higher threshold (T = 0.9) is slightly higher than at T = 0.7 (75.4%),
using T = 0.9 would substantially reduce the number of sample pairs available for mixing. This would limit
the diversity of augmented data and potentially hinder the generalization benefits of the Adaptive Acoustic
Mixup method. Therefore, T = 0.7 is chosen as a balanced setting that maintains high emotion consistency
while providing sufficient sample coverage for effective data augmentation.



Comput Mater Contin. 2026;86(3):87 13

Additionally, this correlation pattern suggests that MFCC similarity at T = 0.7 primarily captures
emotion-relevant acoustic characteristics rather than speaker-specific or channel-dependent traits, as the
latter would not exhibit such strong alignment with emotion labels across different speakers.

(2) Impact of Acoustic Similarity Threshold T in AAM
To assess the sensitivity of this hyperparameter and explore whether performance can be further

improved through optimization, we conducted a series of experiments by varying T from 0.1 to 0.9. As
shown in Table 6, the model achieved optimal performance when T = 0.7, with lower or higher values slightly
reducing the effectiveness. This suggests that the AAM method is moderately sensitive to T.

Table 6: Effect of acoustic similarity threshold T in AAM (%)

Threshold T WA UA
0.1 76.85 76.40
0.3 77.10 76.55
0.5 77.36 76.70
0.7 77.62 76.94
0.9 76.72 76.28

(3) Sensitivity Analysis of Sensitivity α of Interpolation Coefficient of AAM
To verify the rationality of a hyperparameter α in the AAM method and its impact on the model’s

performance, this study conducted comparative experiments with different values of α (α = 1, 2, 3, 5) on the
IEMOCAP dataset.

The experimental results are shown in Table 7, where it can be seen that as the α value increased, the
model’s performance improved up to a certain value. However, for α > 2, the performance improvement
tended to level off and even slightly decreased, indicating that an excessively large interpolation weight could
affect the rationality of the mixed samples. Therefore, in this study, α = 2 was selected as a default setting of
the AAM method, considering both performance and stability.

Table 7: Results of the sensitivity analysis of the interpolation coefficient of the AAM method (%)

Value WA UA
1 76.83 76.22
2 77.62 76.94
3 77.21 76.61
5 76.95 76.65

(4) Ablation Study on AAM Sample Selection Strategies
To verify the specific contributions of the sample selection strategies in AAM, an ablation study

was conducted on the IEMOCAP and RAVDESS dataset by testing two variants: one where the difficulty
weighting mechanism was removed, and another where samples were randomly paired without considering
acoustic similarity. As shown in Table 8, compared to the baseline without data augmentation, both AAM
with random pairing and AAM without difficulty weighting improved model performance; however, the full
AAM method, which combines acoustic similarity pairing and difficulty weighting, achieved the best results,
confirming the importance of these strategies in enhancing data augmentation effectiveness.
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Table 8: Ablation study on AAM sample selection strategies (%)

Dataset Method WA UA
Baseline 76.12 75.78

IEMOCAP AAM without difficulty weighting 76.81 76.55
AAM with random pairs (no acoustic) 76.76 76.42

Full AAM method 77.62 76.94

Baseline 80.24 80.04
RAVDESS AAM without difficulty weighting 80.88 80.63

AAM with random pairs (no acoustic) 80.96 80.68
Full AAM method 81.48 81.21

These findings reveal that acoustic similarity and difficulty-aware sampling strategies each contribute
substantially to AAM’s effectiveness. When combined, these complementary approaches create a synergistic
effect that enables the model to leverage more informative and challenging augmented samples, ultimately
enhancing its generalization capabilities.

(5) Verification of the combined effect of AAM and other data augmentation methods
To comprehensively verify the effectiveness and combination ability of the AAM method in data

augmentation, this study conducted multiple groups of comparative experiments on the IEMOCAP dataset.
The experiments compared the baseline model without data augmentation, the model with AAM alone,
the model with other mainstream data augmentation methods, and the model combining AAM with
these methods.

As shown in Table 9, all methods improved performance to varying degrees. Among them, AAM
achieved superior results, outperforming the baseline by 1.50% and 1.16% in WA and UA, respectively.
Moreover, AAM also surpassed the second-best SPA method. When combined with other approaches,
AAM brought further gains, with AAM+MixUp and AAM+SPA achieving the best overall performance.
These results demonstrate both the effectiveness of AAM and its strong compatibility with other data
augmentation techniques.

Table 9: Comparison of experimental results of the AAM effectiveness (%)

Data augmentation WA UA
Baseline 76.12 75.78

RC 76.84 76.75
MixUp 76.91 76.82

SPA 77.12 76.25
AAM 77.62 76.94

AAM + RC 78.24 77.95
AAM +MixUp 78.51 78.02

AAM + SPA 78.39 78.14

In conclusion, the AAM method could not only effectively improve the SER performance but also show
good extensibility and adaptability when used in combination with mainstream augmentation methods,
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reflecting its strong practical value. Therefore, subsequent experiments on the AAM-augmented data
were performed.

3.4.2 Necessity Analysis of ICASA Modules
This study conducted a series of ablation experiments to verify the effectiveness of each module

in the ICASA model. The experimental results on the IEMOCAP dataset are shown in Table 10. The
experiments compared models without attention mechanism, with only SA, with only ICA, and with ICASA.
As shown in Table 10, the ICASA model achieved the best performance; compared to the model without
attention, WA and UA improved by 3.92% and 2.21%, respectively, confirming its effectiveness. In this
section and subsequent tables, “—” indicates the AAM-MACNN model (without attention) used as the
ablation reference.

Table 10: Effect analysis results of different modules of the ICASA model on the IEMOCAP dataset (%)

Attention mechanism WA UA F1-score

Angry Sad Happy Neutral
— 77.62 76.94 67.40 84.30 67.80 77.20
SA 79.85 77.91 67.50 85.10 70.50 78.80

ICA 79.65 78.48 67.80 85.00 71.80 79.50
ICASA 81.54 79.15 72.20 87.60 72.50 82.40

The ICASA could effectively compress redundant information while retaining key feature expressions
using the improved coordinate attention mechanism, thus enhancing the information interaction between
features. The shuffle attention improved the multi-channel collaboration and discrimination ability through
channel recombination. Thus, the synergistic effect of the two modules could significantly improve the
model’s performance in complex emotion recognition tasks.

To illustrate the dynamic behavior of the learnable fusion weight β in ICASA, we visualized its training
trend; β was initialized at 0.5 and learned freely, as shown in Fig. 5, reflecting how the network adaptively
balances feature contributions.

Figure 5: The changing curve of the learnable fusion weight in the ICASA model
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As shown in Fig. 5, with the increase in the training epoch number, the β value gradually stabilized,
indicating that while the model continuously learned emotional features, the fusion strategy was optimized
simultaneously. In the early training stages, the β value exhibited significant fluctuations, reflecting the
model’s exploration of the optimal fusion ratio between the ICA and SA techniques. In the later training
stages, the β value variations became noticeably smaller and tended to stabilize, suggesting that the model
could progressively establish a more reasonable fusion strategy and effectively integrate multi-dimensional
emotional information.

3.4.3 Comparative Analysis of ICASA and Other Attention Mechanisms
To evaluate the ICASA’s effectiveness, this experiment compared the performance of the ICASA and

four mainstream attention mechanisms, including the ECA [29], CBAM [30], SE [19], and CA mechanisms.
The comparison results on the IEMOCAP and RAVDESS datasets are presented in Tables 11 and 12,
respectively. The experimental results indicated that the ICASA module outperformed the four mainstream
attention mechanisms in terms of weighted and unweighted accuracy, further verifying its effectiveness and
advancement in SER tasks.

Table 11: Effect analysis results of different attention mechanisms on the IEMOCAP dataset (%)

Attention mechanism WA UA F1-score

Angry Sad Happy Neutral
— 77.62 76.94 67.40 84.30 67.80 77.20

ECA 77.38 77.15 67.50 83.50 65.40 74.60
CBAM 77.64 77.89 68.80 84.10 66.90 75.10

SE 78.01 77.62 67.60 84.40 66.60 75.00
CA 78.42 76.28 68.90 86.20 67.80 75.30

ICASA 81.54 79.15 72.20 87.60 72.50 82.40

Table 12: Effect analysis results of different attention mechanisms on the RAVDESS dataset (%)

Attention
mechanism

WA UA F1-score

Neutral Calm Happy Sad Angry Fearful Disgust Surprised
— 81.48 81.21 63.60 89.20 72.10 66.80 86.60 84.70 88.30 82.40

ECA 81.19 80.87 65.50 89.70 73.40 66.40 87.10 84.90 88.90 82.90
CBAM 82.37 82.04 69.10 90.60 77.30 67.20 88.60 86.20 90.00 85.10

SE 81.95 81.39 67.80 90.20 75.60 67.90 87.90 85.60 90.60 84.20
CA 83.22 82.87 72.00 91.40 79.70 68.70 89.20 86.90 91.10 86.60

ICASA 84.78 83.89 74.60 92.20 82.00 69.50 89.90 87.40 91.80 87.90

The average weighted and unweighted accuracy for different attention mechanisms on the IEMOCAP
and RAVDESS datasets are displayed in Fig. 6, where the horizontal axis represents different attention
mechanisms, and the vertical axis indicates the classification accuracy index. In the box plot presented
in Fig. 6, the central dashed line represents the median value of the model’s accuracy, the upper and lower
edges of the box correspond to the third (Q3) and first (Q1) quartiles, respectively, and the box height
reflects the model performance’s stability; the extension range of the vertical solid line shows the extreme
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value distribution of each model in multiple experiments, and the triangular symbol in the box indicates the
model’s average accuracy.

Figure 6: Box plots of various attention mechanisms on the two datasets

As shown in Fig. 6, the proposed model’s weighted accuracy showed a stable growth trend from left to
right and reached its peak on the ICASA. In addition, the box height indicated that the proposed AAM-
ICASA-MACNN model had the smallest fluctuation range on the two datasets and the best stability among
all the models.

3.4.4 Model Performance Evaluation
Overall Performance Metrics

To provide a detailed performance evaluation, Table 13 presents the per-class precision, recall, and F1-
scores for both the IEMOCAP and RAVDESS datasets side by side. Macro- and micro-averages are included
to reflect the model’s overall balance and global performance.

Table 13: Per-class Precision, Recall, and F1-score on IEMOCAP and RAVDESS datasets

Class IEMOCAP RAVDESS

Precision Recall F1 Precision Recall F1
Neutral 0.801 0.853 0.826 0.750 0.667 0.706
Happy 0.729 0.705 0.717 0.875 0.750 0.808

Sad 0.860 0.899 0.879 0.561 0.804 0.661
Angry 0.784 0.617 0.691 0.891 0.864 0.877
Calm – – – 0.961 0.891 0.925

Fearful – – – 0.868 0.958 0.911
Surprised – – – 0.938 0.924 0.931
Disgusted – – – 0.934 0.851 0.891

Macro-Avg 0.794 0.769 0.778 0.847 0.839 0.839
Micro-Avg 0.807 0.807 0.807 0.869 0.869 0.869
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Feature and Class-Level Analysis
The t-SNE visualization results of the features extracted by different models on the IEMOCAP dataset

are presented in Fig. 7; Fig. 7a shows the distribution of the original features; Fig. 7b depicts the distribution
of the features of the baseline model; Fig. 7c displays the distribution of the features of the proposed AAM-
ICASA-MACNN model. In Fig. 7, different icons denote different emotion categories, and the closer the
clustering, the higher the feature discrimination degree, and the stronger the emotion discrimination ability
of the model. The distribution of the original samples of the IEMOCAP dataset showed that there was a
significant overlap between different emotion categories, which increased the difficulty of classification. In
contrast, the features extracted by the proposed model showed tighter intra-class aggregation and clearer
inter-class boundaries in the t-SNE visualization, effectively reducing the category overlap and achieving a
significant improvement in the model’s emotion feature extraction performance and discrimination ability.

Figure 7: The t-SNE visualization of features on the IEMOCAP dataset

The confusion matrix of the AAM-ICASA-MACNN model on the two datasets are presented in Fig. 8.
On the IEMOCAP dataset, the sad and neutral categories achieved recognition accuracies above 80%, with
sad reaching 89%. In contrast, angry and happy were the most challenging, with accuracies of 69% and
74%, respectively. Notably, 18% of angry samples were misclassified as happy, and 19% of happy samples
were predicted as neutral. These errors are mainly due to overlapping acoustic and prosodic characteristics,
including speaking rate, energy, and intonation, which make angry and happy particularly hard to separate.
Additionally, happy speech exhibits strong speaker-dependent variability, and some utterances share similar
rhythm and energy profiles with neutral speech, further increasing misclassification.

On the RAVDESS dataset, fearful and disgusted emotions were recognized with high reliability, achiev-
ing over 90% accuracy, while neutral and happy remained the most confusable categories, with 67% and
75% accuracy, respectively. Approximately 15% of neutral samples were misclassified as sad, reflecting strong
prosodic and spectral overlap between the two emotions. The relatively small number of neutral samples
further limited the model’s capacity to learn discriminative features, contributing to the lower performance.

In addition to confusion matrix analysis, we conducted a calibration study to assess the reliability
of the model’s predicted probabilities. The Expected Calibration Error (ECE) was 0.0718 on IEMOCAP
and 0.0731 on RAVDESS, both below the commonly accepted threshold of 0.1, indicating well-aligned
confidence estimates. Fig. 9 shows confidence score distributions where correct predictions (green) con-
centrate in high-confidence regions while incorrect predictions (red) are skewed toward lower-confidence
bins, demonstrating reliable confidence estimation. Table 14 reports calibration-aware metrics including
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Maximum Calibration Error (MCE), Brier Score, and high-confidence accuracy exceeding 96.9% on both
datasets, confirming the model’s robustness and deployment readiness for practical applications.

Figure 8: Confusion matrix on the two datasets

Figure 9: Confidence score distributions

Table 14: Calibration-aware metrics of the proposed model

Dataset ECE MCE Brier score High-Conf. Accuracy
IEMOCAP 0.0718 0.2361 0.3553 96.9%
RAVDESS 0.0731 0.2451 0.3973 97.8%

3.4.5 Robustness and Fairness Analysis
To systematically evaluate the proposed model’s robustness and fairness, we perform a series of

experiments on the RAVDESS dataset under diverse acoustic and demographic conditions.
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We first evaluate noise robustness by adding additive white Gaussian noise (AWGN) at different SNR
levels. As shown in Table 15, our model consistently outperforms the baseline across all noise levels and still
achieves 63.45% WA at 0 dB SNR, indicating strong robustness for practical deployment.

Table 15: Noise robustness evaluation

Noise level Baseline AAM-ICASA-MACNN

WA UA WA UA
Clean Audio 80.24 80.04 84.78 83.89
20 dB SNR 74.51 74.14 80.12 78.95
10 dB SNR 68.72 66.43 74.23 72.18
0 dB SNR 55.37 52.84 63.45 61.32

We then examine the impact of audio compression and reverberation on model performance. As shown
in Table 16, the model maintains high recognition accuracy under MP3 compression and shows reasonable
robustness to moderate reverberation, indicating good tolerance to real-world channel distortions and
acoustic environments.

Table 16: Robustness under compression and reverberation

Audio condition Baseline AAM-ICASA-MACNN

WA UA WA UA
Original (WAV) 80.24 80.04 84.78 83.89

MP3 128 kbps 77.45 76.82 82.84 81.15
With Reverb

(RT60 = 0.3 s) 74.18 73.45 80.45 79.12

To assess demographic fairness, we compare recognition performance between male and female
speakers. Table 17 shows a small WA gap of 1.72%, suggesting that the model performs consistently
across genders.

Table 17: Gender fairness analysis

Speaker gender WA UA
Male speakers 83.92 82.74

Female speakers 85.64 85.04

Finally, we report class-wise F1 scores for both genders under 10 dB SNR. As shown in Table 18,
performance degradation is consistent across classes and genders, confirming both robustness and fairness
of the proposed model.

3.4.6 Model Performance and Computational Efficiency Analysis
To ensure robust statistical evaluation, we conducted utterance-level paired tests comparing predictions

on each test utterance pooled from all cross-validation folds (5531 for IEMOCAP; 1440 for RAVDESS). As
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shown in Table 19, all improvements are statistically significant under both parametric (paired t-test) and
non-parametric (Wilcoxon signed-rank) tests (all p < 0.001 after Holm-Bonferroni correction), with effect
sizes (Cohen’s d) ranging from 1.70 to 2.54 and 95% confidence intervals confirming gains of 3.4%–5.3%.

Table 18: Class-wise F1 scores by speaker gender under 10 dB SNR

Emotion class Male speakers Female speakers

Clean F1 10 dB SNR F1 Clean F1 10 dB SNR F1
Neutral 73.50 67.20 75.60 69.10
Calm 91.80 88.90 92.50 89.30
Happy 81.20 75.60 82.70 77.20

Sad 68.90 62.50 70.10 64.90
Angry 89.50 84.70 90.30 85.90
Fearful 86.80 81.50 88.10 82.60
Disgust 91.10 87.00 92.40 88.20

Surprised 87.00 82.60 88.70 84.30

Table 19: Statistical significance of performance improvements

Dataset Metric Mean Diff
(%) 95% CI (%) Cohen’s d t(df) pt W stat pW

IEMOCAP WA 5.25 [5.18,5.33] 2.54 132.46 <0.001 9.82 × 104
<0.001

UA 3.44 [3.37,3.52] 1.70 90.04 <0.001 6.47 × 105
<0.001

RAVDESS WA 4.36 [4.21,4.51] 2.12 56.64 <0.001 1.81 × 104
<0.001

UA 3.69 [3.55,3.84] 1.85 49.66 <0.001 3.29 × 104
<0.001

Note: All p-values remain <0.001 after Holm-Bonferroni correction. pt : paired t-test; pW : Wilcoxon signed-
rank test.

To assess computational efficiency, Table 20 compares AAM-MACNN and its variants.AAM-ICA-
MACNN achieves the highest structural efficiency with 15.1% fewer parameters and 15.6% fewer FLOPs.
The proposed AAM-ICASA-MACNN slightly increases parameters (2.15 M vs. 2.08 M) due to adaptive
modulation, yet maintains a 12.2% parameter reduction and 17.3% latency improvement over the AAM-
MACNN, with only 0.04 GFLOPs (2.9%) overhead. These results confirm a superior efficiency–accuracy
balance achieved through refined attention and semantic integration.

Table 20: Complexity–efficiency analysis of proposed model and variants

Model structure Parameters
(M)

FLOPs
(GFLOPs)

MACs
(GMACs)

Inference
latency (ms)

Activation
memory (MB)

AAM-MACNN 2.45 1.60 0.82 31.2 ± 0.46 164
AAM-SA-MACNN 2.31 1.48 0.76 28.7 ± 0.43 152

AAM-ICA-MACNN 2.08 1.35 0.69 25.1 ± 0.32 142
AAM-ICASA-

MACNN 2.15 1.39 0.71 25.8 ± 0.37 146
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3.4.7 Comparison Experiments with Different Models
To verify the superiority of the proposed model, we compared it with several representative advanced

SER models on both datasets, as presented in Table 21. On IEMOCAP, the proposed model achieved WA and
UA improvements of 3.13%–5.38% and 0.24%–3.33% respectively over models such as SAWC, MelTrans, and
HuBERT-large. On RAVDESS, compared with H-Conforme, MLAnet, and BiMER-Transformer, our model
demonstrated WA and UA gains of 0.30%–3.28% and 0.34%–3.34% respectively, confirming the effectiveness
and superior performance of the proposed method in speech emotion recognition.

Table 21: Comparison results of different models on the two datasets (%)

Dataset Model WA UA
Baseline(MACNN) 76.12 75.78

SAWC [31] 76.10 75.90
MelTrans [32] 76.50 76.54

IEMOCAP SpeechEQ [33] 78.16 77.47
MCT-HFR [34] 78.41 78.85

HuBERT-large [35] 77.49 78.91
AAM-ICASA-MACNN 81.54 79.15

Baseline(MACNN) 80.24 80.04
(HuBERT+DPCNN)+CAF [36] 81.60 82.75

MLAnet [37] 84.48 83.55
RAVDESS BiMER-Transformer [38] 83.50 82.40

BiLSTM–Transformer-2DCNN [39] 79.34 80.19
H-Conformer [40] 82.50 80.30

AAM-ICASA-MACNN 84.78 83.89

4 Conclusion
This study presents an improved SER model named AAM-ICASA-MACNN, which employs an adap-

tive acoustic mixup strategy to dynamically augment training samples, effectively enhancing the model’s
generalization performance and mitigating data imbalance. In addition, an improved dual-path attention
mechanism, ICASA, is proposed to further enhance the feature extraction ability by dynamically fusing
the improved coordinate attention and shuffle attention. The experimental results show that the proposed
method can achieve significant performance improvement on the IEMOCAP and RAVDESS speech emotion
datasets compared to the existing methods, which verifies the superiority.

In future work, the model could be further improved by integrating generative adversarial networks
for more robust data augmentation and applying lightweight neural architecture search to achieve a better
balance between model complexity and recognition performance.
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