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ABSTRACT: The growing developments in 5G and 6G wireless communications have revolutionized communications
technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises
significant security challenges, including impersonation threats, data manipulation, distributed denial of service
(DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and
dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning
(FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems.
Blockchain offers decentralized, immutable, and transparent mechanisms for securing network transactions, while FL
enables privacy-preserving collaborative learning without sharing raw data. Digital Twins create virtual replicas of
network components, enabling real-time monitoring, anomaly detection, and predictive threat analysis. The survey
examines major security issues in emerging wireless architectures and analyzes recent advancements that integrate
FL, Blockchain, and DT to mitigate these threats. Additionally, it presents practical use cases, synthesizes key lessons
learned, and identifies ongoing research challenges. Finally, the survey outlines future research directions to support
the development of scalable, intelligent, and robust security frameworks for next-generation wireless networks.
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1 Introduction
Wireless communication has been a vital means to enable pervasive connectivity, enabling instant

information exchange between user devices and infrastructures [1,2]. Owing to the growing demand for
real-time processing in wireless networks, traditional cloud computing architectures cannot meet their
requirements [3,4]. To overcome the limitations of cloud computing, edge computing (EC) has been
proposed, which is viewed as a groundbreaking paradigm in the field of distributed computing. It offers
unmatched promise for low-latency processing, real-time data analysis, and enhanced scalability [3,5]. EC is
capable of overcoming the limitations of cloud computing due to edge decentralized computation, especially
in the application scenarios where response and processing are required swiftly, such as autonomous vehicles,
industrial automation, and smart cities.
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In spite of the EC benefits, it also poses a new range of security threats to user devices [6]. EC frameworks
are more susceptible to threats like data breaches, unauthorized access, and advanced cyberattacks, because
of Its decentralized nature and resource-constrained edge nodes [7]. In contrast to centralized cloud
architecture, EC necessitates lightweight, distributed, and dynamic security functions in order to protect the
data confidentiality, integrity, and availability [8]. With the advent of 5G and 6G networks, the deployment of
EC has been pushed even further, enabling ultra-reliable, low-latency, and high-throughput communication
services to a huge spectrum of intelligent systems, including the Internet of Things (IoT), autonomous
mobility, and future industrial use [9]. But the same decentralized and extensive nature of these networks
imposes large security and privacy threats.

Federated learning (FL) and blockchain (BC) subsequently became prominent technologies to support
security and trust enhancement in 5G/6G edge-based infrastructure [10]. BC offers tamper-evident data
exchange and decentralized access control [11], and FL supports cooperative model learning without raw data
sharing while preserving privacy in distributed environments. This work presents a comprehensive survey
of their contributions towards wireless network security enhancement. We will examine some of the security
challenges that manifest in the edge environments, investigate existing solutions available, and find newer
research advancements in this important field. Moreover, this paper will provide guidelines on securing EC
for the future with a focus on new innovative strategies to address the evolving threat landscape. This review
aims to inform an effort to improve the EC systems against future threats to security by synthesizing current
evidence and highlighting gaps in the literature.

1.1 State-of-the-Art in Wireless Communication Technologies
The evolution of wireless communication has led to the development of 5G and 6G networks [12].

5G focuses on enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC),
and massive machine-type communications (mMTC) [13]. In contrast, 6G introduces Artificial Intelli-
gence (AI)-driven networking and quantum-safe communication technologies to enhance network security
and efficiency.

With speed, connection, and latency advances, 5G networks have completely changed the wireless
communication scene [14,15]. IoT, smart grids, and real-time applications have all benefited from the quick
adoption of massive machine-type communication (mMTC) and eMBB, according to recent research by
Popovski et al. [16]. In terms of 6G, Yang et al. [17] and Nguyen et al. [18] forecast the arrival of AI-
driven networking and terahertz communication, opening up possibilities for uses like smart healthcare and
holographic communication. These networks will need strong security frameworks to safeguard sensitive
data in these high-performance settings.

Ahmad et al. [19] highlight the underlying advanced threat profile encompassing 5G networks and
draw attention to security vulnerability heterogeneity in the new technology paradigms underlying 5G
implementation. The authors provided a structured explanation of the overriding security concerns, ranging
across data privacy and authentication threats, DoS attacks, and virtualized infrastructure vulnerabilities, to
emphasize the need for robust security at both architectural and operational dimensions. In tackling these
obstacles, the research surveys existing mitigation strategies and recognizes proactive approaches, including
the use of artificial intelligence to detect anomalies, blockchain to handle decentralized trust, and the design
of next-generation cryptographic primitives.

The increasing use of EC and accepting open architectures create new cyberattack risks. Furthermore,
there is a greater chance of data leakage, privacy breaches, and unauthorized access due to the vast number of
linked devices. According to work by Ramezanpour and Jagannath [20] and Chen et al. [21], a move toward



Comput Mater Contin. 2026;86(3):3 3

decentralized security procedures is necessary to secure the enormous and intricate 5G and 6G networks.
These mechanisms are essential for real-time threat detection and mitigation in highly dispersed networks.

The deployment of 5G and 6G technology brings forward a variety of security issues. For example,
Alnaim [22] highlight how software-defined networking (SDN) and network function virtualization (NFV)
are essential components of 5G design, but they also provide vulnerabilities in the control plane. In their
work, they investigated how such technologies expose networks to new attack paths like resource exhaustion
and virtual network function (VNF) attacks while promoting flexibility and resource handling.

Similarly, Shehab et al. [23] had conducted an extensive analysis to examine the role of 5G networks
as an enabling pillar of sustainability in the context of smart cities. Their work demonstrates how the
advanced features of 5G can provide the technology backbone required to accommodate sustainable
urban development. The review gives an overview of the 5G communication network architecture and
characteristics, emphasizing their ability to support the wide variety of smart city applications like intelligent
transport systems, energy-efficient infrastructure, and massive IoT installations. From the examination of
a number of important 5G technologies, the authors demonstrate how these developments work towards
optimizing resource use, lowering the energy footprint, and enhancing the efficiency and resilience of city
systems as a whole, thus furthering long-term sustainability objectives.

This work attempts to investigate how FL techniques and BC technology can be adapted to address
the new security issues of 5G and 6G communication. While BC offers tamper-proof and open records, FL
allows distributed ML without the need for centralized storage of data, both technologies offer decentralized
solutions to improving network security. The following will be the main topics of this paper:

• How BC technology may reduce risks such as DDoS assaults, illegal access, and data manipulation.
• FL’s function in intrusion detection and privacy-preserving data analysis.
• Current research has focused on integrating FL and BC technology into 5G and 6G networks to safeguard

against advanced threats and provide secure communication.

This paper systematically explores the security issues and creative solutions related to 5G and 6G wireless
networks, with particular emphasis on cutting-edge methods like FL and BC. Several major components
make up the paper, as seen in Fig. 1.

Figure 1: Structure of the survey

1.2 Scope of the Study
This work primarily serves as a comprehensive survey of existing research on the applications of FL

and BC for addressing security issues in 5G/6G. While it does not present original experimental data or
case studies, the manuscript systematically reviews state-of-the-art approaches, highlights key challenges,
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and discusses potential future directions. Relevant experimental findings from prior studies are cited where
appropriate to illustrate the potential effectiveness of these technologies. The objective is to provide a solid
foundation for subsequent empirical research and practical implementations in this rapidly evolving area.

1.3 Research Questions
This work considers the following research questions to guide the analysis of BC and FL for secure

5G/6G networks:

1. What are the main security and privacy challenges in 5G/6G networks?
2. How can BC integration enhance trust, reliability, and incentive mechanisms in 5G/6G networks?
3. How can FL integration enhance trust, reliability, and incentive mechanisms in 5G/6G networks?
4. How to integrate digital twins (DT) for addressing security issues in 5G/6G networks?
5. What are the existing approaches based on BC and FL, trade-offs, and limitations in 5G/6G networks?
6. Which application domains, such as IoT and Internet of Vehicles (IoV), benefit most from BC and FL,

and how is its effectiveness evaluated?

These questions provide a structured framework for the categorization, analysis, and discussion
throughout this survey.

2 Related Survey Papers
The use of BC technology in Mobile Edge Computing (MEC) systems has drawn considerable interest

since it can improve security, privacy, and data integrity. This part consolidates information from recent
review and survey papers on the application of BC technology towards securing MEC with emphasis on
existing challenges, solutions, and future work.

• BC for enhancing MEC security and privacy
BC’s decentralized nature provides robust security characteristics, making it a suitable option to provide
data integrity and secure communication in MEC environments. Different survey articles have explored
this integration, for example, Mathur et al. [24] showcased a survey on the applications of BC for various
IoT applications. Sharma et al. [25] also touched on the application of BC in green IoT and highlighted its
advantages in providing secure and open data-sharing platforms. Similarly, Conti et al. [26] conducted
a survey of security threats to MEC and proposed BC as an optimal choice for developing secure access
control systems, citing the technology’s ability to verify devices and keep communications confidential.
Furthermore, Tang et al. [27] provides a comprehensive analysis of BC-based FL, highlighting its
potential to address the privacy, security, and reliability challenges inherent in traditional FL.

• Consensus mechanisms in BC-enabled MEC
The appropriate consensus mechanisms are crucial to the scalability and performance of BC-enabled
MEC systems. Traditional consensus protocols like proof of work (PoW) and proof of stake (PoS) are
computationally intensive and thus not best suited for MEC’s resource-constrained environments. Jain
et al. [28] described a comprehensive overview of light-weight consensus protocols for MEC, namely
delegated PoS (DPoS) and practical byzantine fault tolerance (PBFT), and accounted for their reduced
computational requirements and decreased latency. Besides, Luo et al. [29] proposed an energy-efficient
two-stage computationally efficient consensus mechanism for BC-based MEC.

• Resource management optimization
Integrating BC with MEC introduces significant challenges in resource management, particularly regard-
ing computational power, storage, and bandwidth. Mershad [30] reviewed various BC-based resource
allocation schemes that use smart contracts to automate and optimize the allocation of resources, thereby
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enhancing the operational efficiency of MEC networks. Additionally, Xue et al. [31] presented an in-
depth survey of the integration of EC and IoT. They briefly discussed the architecture of IoT and its
challenges. Adam et al. [32] provided an extensive research study on IoT security, privacy, and trust that
was structured according to a three-layered IoT architectural model comprising the perception, network,
and application layers. The study begins with an overview of the fundamentals of IoT security, privacy
preservation, and trust building, emphasizing their essentiality in ensuring reliable and sustainable
IoT applications. From this context, the authors present the systematic review of the main security
requirements in each layer of the IoT architecture—such as authentication, confidentiality, integrity of
data, and access control—along with the discussion of the unique vulnerabilities and threats inherent
in resource-constrained IoT environments. Difficulty such as heterogeneity of devices, large-scale
connectivity, lack of standardized protocols, along with the compromise between lightweight security
solutions and robust protection, are highlighted by the review. Furthermore, the paper explains how
privacy-enhancing mechanisms and trust models can be combined with traditional security solutions to
enhance end-to-end system resilience.

• BC for secure data offloading and task scheduling:
Integrating BC technology with MEC has garnered significant attention for its potential to address
security, privacy, and efficiency concerns in computation offloading and resource management. A
comprehensive survey by Moghaddasi and Rajabi [33] explores BC-based offloading methods within
MEC, offering a systematic review of current trends, algorithms, and techniques used to enhance
the security and privacy of offloading processes. This survey also discusses future directions for BC
integration in MEC, underscoring its growing importance in IoT and edge environments.
Xue et al. [34] provided another essential review on the integration of BC and EC in IoT applications.
They highlighted how BC can be leveraged to improve data management, resource allocation, and
security in EC systems. Their paper sheds light on the dual role of BC in enhancing both the performance
and the privacy of EC by decentralizing trust and offering secure transaction mechanisms.
The role of BC in resource scheduling for EC is further discussed by Luo et al. [35], who surveyed
the challenges and techniques related to resource scheduling in MEC environments. The review covers
computation offloading, resource allocation, and provisioning methods, and it emphasizes the need for
more efficient solutions to meet the increasing demands of real-time applications. It also highlights the
potential of BC to improve fairness and transparency in scheduling decisions.
Additionally, Mach and Becvar [36] critically summarized the fundamental concepts and decision-
making processes of MEC that control whether computation tasks are executed locally on mobile
devices or offloaded to proximate edge servers. The survey also delves into the complexities of resource
management, wherein latency limitations, energy consumption, and available bandwidth in the network
affect offloading decisions. Furthermore, authors discuss mobility management issues that arise in
mobile dynamic environments, particularly maintaining service continuity and QoE as users roam across
heterogeneous networks. By placing these issues in the broader context of MEC system design, Mach
and Becvar offer valuable insights into the potential and limitations of computation offloading and lay
the foundation for future work on optimizing edge-enabled mobile applications.
Mikavica and Kostić-Ljubisavljević [37] presented a survey of BC-based solutions for security, privacy,
and trust management in vehicular networks. They aimed to review, classify, and discuss a range of the
proposed models in BC-based vehicular networks. They presented a comparison of the available models
with their main features and objectives regarding security, privacy preservation, and trust management.

While the existing surveys provide valuable insights into the integration of BC technology with MEC
for enhancing security, privacy, and trust, several critical gaps remain. Most of the reviewed papers focus on
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either the technical feasibility of BC in MEC or on optimizing specific aspects like consensus mechanisms,
resource management, or data offloading separately. There is a lack of comprehensive research that systemat-
ically addresses the challenges of deploying BC in MEC environments across multiple dimensions, including
security, scalability, energy efficiency, and real-time processing. Furthermore, existing studies often overlook
the practical implementation scenarios and the interoperability challenges that arise when combining BC
with diverse EC infrastructures.

This work aims to fill these gaps by providing a holistic review of BC-assisted technologies for securing
MEC, examining integrated solutions that address the multifaceted challenges of MEC environments, and
identifying future research directions that can facilitate the seamless adoption of BC in EC. This work will
also explore novel BC-based frameworks that can enhance the reliability, efficiency, and scalability of MEC
systems, laying a foundation for secure and intelligent EC networks.

2.1 Consensus Mechanisms in Blockchain-Enabled MEC
Consensus mechanisms are fundamental protocols in blockchain technology that ensure all nodes in a

distributed network agree on the validity of transactions or data, maintaining the integrity and consistency
of the blockchain. In the context of Mobile EC(MEC), consensus mechanisms play a crucial role in enabling
secure, decentralized, and trustworthy interactions between edge devices, users, and services.

In MEC environments, where computational tasks and data processing are moved closer to the network
edge [3], integrating blockchain requires efficient consensus mechanisms to ensure secure data transactions
and resource sharing among edge nodes. The unique characteristics of MEC, such as low latency, high
bandwidth, and real-time processing, make the selection of suitable consensus algorithms critical for
maintaining performance and security.

Some common consensus mechanisms in Blockchain-Enabled MEC are given in Table 1 and are
discussed below:

Table 1: Overview of the work addressing security concerns in wireless communication

No. Authors Title Journal Year Key findings
1 Luo

et al. [38]
A Trusted Federated
Incentive Mechanism

Based on Blockchain for
6G Network Data Security

Applied Sciences 2023 Improved security and
convergence using BC and

smart contracts.

2 Haddad [39] Enhancing privacy and
security in 5G networks

with an anonymous
handover protocol based
on Blockchain and Zero

Knowledge Proof

Computer Networks 2024 Forward/Backward secrecy
using BC and zero
knowledge proof.

3 Maroufi
et al. [40]

Lightweight
Blockchain-Based

Architecture for 5G
Enabled IoT

IEEE Access 2023 Enhanced security against
data manipulation and

fraud using hashing and
encryption protocols.

(Continued)
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Table 1 (continued)

No. Authors Title Journal Year Key findings
4 Yang

et al. [41]
An Improved Federated
Learning Algorithm for
Privacy Preserving in
Cybertwin-Driven 6G

System

IEEE Transactions
on Industrial
Informatics

2022 Avoid privacy leakage
using FL.

5 Wan
et al. [42]

Privacy-preserving
blockchain-enabled

federated learning for
B5G-Driven edge

computing

Computer Networks 2022 Differential privacy
protection with BC and FL.

6 Lu
et al. [43]

Blockchain and Federated
Learning for 5G Beyond

IEEE Network 2021 Enhanced the security and
privacy by integrating BC

into a FL.
7 Asad

et al. [44]
Secure and Efficient
Blockchain-Based

Federated Learning
Approach for VANETs

IEEE Internet of
Things Journal

2024 Communication efficiency
and data privacy

8 Kalapaaking
et al. [45]

Blockchain-Based
Federated Learning With

Secure Aggregation in
Trusted Execution
Environment for

Internet-of-Things

IEEE Transactions
on Industrial
Informatics

2023 Securing model
aggregation

9 Akoramurthy
et al. [46]

Blockchain-based
federated learning in

internet of health things

Federated Learning
for Digital
Healthcare

Systems(Book)

2024 Protecting the privacy of
connected health data

10 Azzaoui
et al. [47]

Block5GIntell: Blockchain
for AI-Enabled 5G

Networks

IEEE Access 2020 Secure sharing of
information and resources

among 5G nodes
11 Liu

et al. [48]
A Secure Federated

Learning Framework for
5G Networks

IEEE Wireless
Communications

2020 Prevent malicious or
unreliable participants

12 Du
et al. [49]

Federated learning for
distributed intrusion

detection in IoT networks

Advanced Machine
Learning for
Cyber-Attack

Detection in IoT
Networks

2025 Intrusion detection

(Continued)
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Table 1 (continued)

No. Authors Title Journal Year Key findings
13 Chelghoum

et al. [50]
Blockchain and AI for

Collaborative Intrusion
Detection in 6G-enabled

IoT Networks

IEEE 25th
International

Conference on High
Performance

Switching and
Routing (HPSR)

2024 Intrusion detection

14 Fu
et al. [51]

Federated Learning-Based
Resource Management
with Blockchain Trust

Assurance in Smart IoT

Electronics 2023 Trust management and
malicious nodes’ detection

15 Liu
et al. [52]

BFL-SA: Blockchain-based
federated learning via

enhanced secure
aggregation

Journal of Systems
Architecture

2024 Secured data aggregation.

2.1.1 Proof of Work (PoW)
PoW is the original consensus mechanism used by Bitcoin, which requires nodes (miners) to solve

complex mathematical puzzles to validate transactions. However, due to its high computational require-
ments and energy consumption, PoW is generally not suitable for MEC environments where devices have
limited resources.

2.1.2 Proof of Stake (PoS)
PoS is an alternative to PoW that requires validators to own a certain amount of cryptocurrency to

participate in the consensus process. Validators are chosen to create new blocks based on their stake. PoS is
more energy-efficient than PoW, but it can still be challenging to implement in resource-constrained edge
devices typical of MEC networks.

2.1.3 Delegated Proof of Stake (DPoS)
DPoS is an extension of the initial PoS consensus algorithm that seeks to promote scalability and

efficiency for distributed ledger systems. In this system, network stakeholders vote proportionally to their
stake to select a small group of trusted delegates, also referred to as witnesses or validators. These voted
delegates are later given the privilege to confirm transactions, generate new blocks, and also keep the overall
integrity of the blockchain. DPoS significantly reduces communication overhead, accelerates the time for
block confirmation, and also achieves higher throughput than the conventional PoS and PoW systems by
restricting the consensus process to a smaller set of nodes. This light-weight nature renders DPoS particularly
effective in low-latency and resource-constrained environments such as MEC, where immediate consensus
is imperative in facilitating real-time services and applications. Furthermore, the voting mechanism ensures
a degree of decentralized control since stakeholders continue to maintain the ability to replace satisfactory
or malicious delegates, hence maintaining accountability and responsiveness within the system. DPoS offers
scalability and efficiency, which are essential for EC scenarios.
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2.1.4 Practical Byzantine Fault Tolerance (PBFT)
PBFT is a consensus mechanism designed to tolerate Byzantine faults (where nodes may act maliciously

or fail unpredictably). It achieves consensus through a series of communication rounds among nodes,
ensuring that even if some nodes are compromised, the system remains secure. PBFT is efficient in terms of
resource consumption, making it well-suited for MEC environments with a smaller number of nodes.

2.1.5 Proof of Authority (PoA)
PoA relies on a limited number of pre-approved validators who are responsible for validating transac-

tions. This approach reduces the computational load and enhances transaction speed, making it suitable for
private or consortium blockchains in MEC. PoA offers a balance between decentralization and efficiency,
which is crucial for edge-based applications.

2.1.6 Federated Byzantine Agreement (FBA)
FBA, used by systems like Stellar, involves a network of nodes agreeing on a set of trusted nodes

to validate transactions. This consensus mechanism is lightweight and can be adjusted to suit the scal-
ability and security needs of MEC environments, where trust relationships can be predefined based on
network architecture.

2.2 State-of-the-Art Approaches in Addressing Security Issues
Recent improvements in wireless communication, particularly with 5G and 6G, have revealed the

potential of BC and FL to address security concerns. Below is an overview of studies that explore these
topics further. For 6G data security, Luo et al. [38] provided a trusted federated incentive mechanism that
combines BC and FL. The suggested method makes use of BC and smart contracts to protect user privacy
and incentivize edge nodes to engage in secure FL. When compared to conventional algorithms, this method
enhances convergence and security. The use of BC technology to improve the decentralization of security
protocols in 5G networks is covered by Haddad [39]. Their work focuses on developing an immutable ledger
for network transactions to protect data integrity and mitigate distributed denial of service (DDoS) attacks.
A lightweight BC-Based architecture is put out by Maroufi et al. [40] to secure 5G-enabled IoT scenarios.
Their architecture outperforms conventional 5G (without BC) regarding security against data manipulation
and fraud. FL is investigated by Yang et al. [41] for model training on 5G networks while maintaining privacy.
Their study demonstrates how FL may be used to cooperatively discover anomalies among various IoT
devices while protecting user privacy. In 6G networks, Wan et al. [42] provide BC-enabled FL for B5G-
driven EC, where massive data collected from edge devices fuels AI model training. To protect sensitive
data while enabling collaborative learning, they propose a hybrid framework combining BC-enabled FL and
WGAN-based differential privacy.

Lu et al. [43] enhanced the security and privacy by integrating BC into a FL scheme for maintaining
the trained parameters. Asad et al. [44] proposed a secure and efficient BC-based FL approach to ensure
communication efficiency and data privacy in vehicular ad hoc networks (VANETs). Their research mini-
mized the long delay while avoiding possible threats and attacks using homomorphic encryption systems.
Kalapaaking et al. [45] BC-based FL framework with Intel Software Guard Extension-based trusted execution
environment to securely aggregate local models in Industrial IoT. BC-based FL systems are investigated by
Akoramurthy et al. [46] as a means of protecting medical IoT data. Their research shows how BC protects
privacy while sensitive healthcare data models are being trained federatedly.

Azzaoui et al. [47] presented a comprehensive intelligence and secure data analytics framework for 5G
networks based on the convergence of BC and AI named Block5GIntell. Liu et al. [48] presented a BC-based
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secure FL framework to create smart contracts and prevent malicious or unreliable participants from being
involved in FL.

For IoT networks, Du et al. [49] suggested an FL architecture that offers distributed, secure intrusion
detection. The application of FL with BC for intrusion detection systems in 5G and 6G networks was
investigated by Chelghoum et al. [50]. Their method improves the security of networked devices by
identifying anomalous activity in real-time. Fu et al. [51] presented an IoT resource management framework
incorporating BC and FL. They proposed a specific FL-based resource management with a BC trust
assurance algorithm.

Liu et al. [52] proposed a BC-based FL via enhanced secure aggregation. Their method boosted security
and fault tolerance while improving the efficiency of data utilization in the secure aggregation process. Fig. 2
illustrates how FL and BC are integrated to secure wireless networks, especially in 5G and 6G scenarios. The
image demonstrates how data moves between edge devices, how FL is used for local model training, and
how BC ensures safe data transfers, privacy, and authentication.

Figure 2: Generic layered architecture of BC and FL for securing wireless communication networks

2.3 Quantitative Metrics for Security and Privacy
Although this survey primarily provides a qualitative analysis of security mechanisms and privacy-

preserving techniques in next-generation wireless networks, quantifiable metrics reported in the literature
are included to strengthen the discussion. Prior studies provide numerical insights such as encryption
and decryption latency, key size requirements, privacy leakage probabilities, and differential privacy noise
parameters relevant to quantum-safe cryptography, Blockchain-based security, and federated learning
frameworks [53–55]. These quantitative findings are summarized where appropriate to contextualize the
performance of different techniques. Furthermore, the survey emphasizes the need for future empirical
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evaluations under realistic network environments to establish standardized benchmarks for assessing
security and privacy effectiveness in 5G and 6G systems.

3 Notable Case Studies and Applications
The latest advancements in technology witnessed BC and FL showing great potential for providing

security in 5G and 6G networks. The section brings forth major real-world applications of the technologies,
with emphasis on how they are efficient and scalable for various situations.

3.1 Telecom Italia’s BC-Based IoT Security Solution
Telecom Italia has launched a BC-based security solution to protect IoT devices on its 5G network.

A decentralized ledger is utilized to record device identities and encrypt data communication. With this
BC, Telecom Italia is able to provide immutable records of device interactions, restricting the spoofing and
unauthorized access risk. Scalable with the large number of IoT devices, the decentralized nature of the
system addresses central bottlenecks but accommodates massive deployment.

3.2 IBM’s FL for Privacy-Preserving Data Analytics
IBM uses FL to enable privacy-preserving data analytics on its 5G network. Deployment enables model

training collaboratively without the exchange of raw data. FL retains sensitive information locally, thus
enhancing privacy and regulatory compliance. FL can support a large number of entities to participate in
model training to avoid data centralization issues and scale with the network.

Fig. 3 presents real-world applications of BC and FL in 5G/6G networks, demonstrating significant
advancements in securing and scaling modern communication infrastructures. Each case study highlights
unique approaches to addressing security challenges, from privacy preservation to scalable data manage-
ment. The integration of these technologies offers promising solutions to enhance network security and
efficiency. Future developments will continue to refine these applications and address emerging challenges
in the evolving landscape of wireless communication.

Figure 3: Applications of BC and FL in 5G/6G Networks
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3.3 Security Issues in Wireless Communication
Because of the growing number of applications that operate over wireless networks, wireless communi-

cation security is essential. All these challenges cover a broad range of issues, such as user privacy, network
attack resilience, and confidentiality, integrity, and availability of data. Since wireless networks are broadcast
in nature, they are inherently more susceptible to security attacks than wired networks. Some of the principal
security concerns include the following.

• Unauthorised users are able to intercept communications over wireless channels, potentially causing data
breaches. Encryption protocols must be used to avoid data interception. Current research emphasizes
the role of advanced encryption methods in preventing such threats [56].

• Unauthorized attempts at access are feasible in wireless networks. Effective access control and authen-
tication measures must be implemented to prevent access by unauthorized entities. Several techniques
for improving access control and authentication in wireless networks have been shown in research [57].

• Data integrity is defined as a promise that information does not get altered during transmission. Methods
like digital signatures and cryptographic hashing are utilized to ensure data integrity. Significant surveys
summarize significant developments in integrity verification techniques [58].

• Overloading the network with excessive traffic can interfere with services in wireless networks using
DoS attacks. Intrusion detection technology and efficient traffic management are required to counter
such threats. Comprehensive research on DoS attacks and remedies could be referred to through the
literature [59].

• Rogue or unauthorized access points may be installed to deceive users and plunder information.
Network monitoring and management are needed to detect and remove rogue access points. Solutions
for rogue access point detection and rogue access point control are discussed in recent studies [60].

3.4 Developments in Wireless Protection
Recent developments are intended to overcome these challenges.

• Data wireless transmission is made secure using enhanced encryption techniques. Comparisons of
encryption technology and performance of encryption in wireless networks are useful pieces of
information [61].

• AI and ML technologies are being used more and more for threat detection and response, making the
network more capable of detecting and responding to any security weaknesses. Recent critiques have
discussed how AI and ML are applied to improve wireless network security [62].

• BC adds an extra layer of security to wireless networks through the offering of a decentralized way of
handling transaction security and access control. The potential of BC technology to improve security is
highlighted in papers on its use in wireless networks [63].

Because 5G networks use a service-based architecture (SBA), which divides the control and user planes
to provide scalability and flexibility, they significantly improve wireless communication. eMBB, Massive
Machine Type Communications (mMTC), and URLLC are some salient characteristics. These characteristics
support large numbers of linked devices, low latency, and high-speed communication. 5G’s security features
include increased authentication techniques like 5G-AKA (Authentication and Key Agreement) and better
encryption technologies [19].

With the integration of AI-driven network management, sophisticated network slicing, and seamless
satellite network integration, 6G is anticipated to enhance the design of wireless networks significantly. It
seeks to enable cutting-edge applications, including quantum and holographic communication technologies,
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and use Terahertz (THz) communication channels [64]. In order to handle new threats and improve privacy-
preserving measures, 6G is expected to include AI-driven security protocols and quantum-safe encryption
techniques [65,66].

3.5 Comparison between 5G and 6G Networks
Table 2 and Fig. 4 provide comparisons of key features of 5G and 6G networks. The comparison is mainly

based on the following directions.
1. Architecture: 6G builds on 5G’s SBA by adding more sophisticated integration and management features.
2. Frequency bands: 6G will use quantum technology and THz bands, whereas 5G uses millimeter waves.
3. Security: While 6G is anticipated to provide quantum-safe encryption and AI-driven security, 5G offers

enhanced authentication and encryption [67,68].
4. Threat landscape: New technologies give 5G a larger attack surface, while more advanced threats are

expected for 6G [69,70].

Table 2: Comparison of 5G and 6G networks

Aspect 5G 6G
Architecture Service-Based Architecture (SBA)

with separated control and user planes
Advanced SBA with AI-driven management

and integration with satellite networks
Frequency bands Millimeter waves (24 GHz and above) Terahertz (THz) bands and integration with

quantum communication technologies
Key features eMBB, URLLC, mMTC Holographic communication, advanced

AI/ML, seamless integration with quantum
and satellite networks

Security
mechanisms

Improved encryption (256-bit),
enhanced authentication (5G-AKA),

network slicing

Quantum-safe encryption, AI-driven
security protocols, advanced

privacy-preserving mechanisms
Threat landscape Expanded attack surface due to new

technologies and frequency bands
Anticipated sophisticated threats targeting

THz bands, AI-driven attacks, and quantum
communication

Network slicing Initial implementation with isolated
security domains

More refined with AI-driven management
and enhanced security features

Privacy Improved but still susceptible to
certain breaches

Expected to offer superior privacy
mechanisms with better data control and

usage

3.5.1 Privacy Breaches
The IoT and increased connectivity in 5G and 6G networks increase the potential of privacy intrusions.

Network protocol flaws can be exploited by malicious actors, particularly during network handovers.
Common risks include location monitoring, unlawful access to personal information, and communication
interception. Important countermeasures include methods like end-to-end encryption, pseudonymization,
and privacy-preserving models like differential privacy. Humayun et al. [71] discuss various privacy-
preserving techniques in IoT environments over 5G, focusing on challenges like data sharing and access
control. Research by Huang et al. [72] highlights privacy-preserving schemes for 5G vehicular networks,
where encryption and anonymization techniques play a critical role. Furthermore, Al Ridhawi et al. [73]
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outline methods to protect sensitive user data in their proposal for secure communication protocols for
5G-enabled smart cities.

Figure 4: Comparison of key features between 5G and 6G networks

3.5.2 Distributed Denial of Service (DDoS) Attacks
The dispersed nature of DDoS attacks makes them a huge threat to 5G and 6G networks. Attackers

can deny network availability by flooding services with spurious traffic, affecting critical applications like
healthcare and autonomous vehicles. In their distributed defense against DDoS attacks in 5G, Hoque
et al. [74] highlight the necessity for cooperative detection systems. With emphasis on deep learning methods,
Kuadey [75] exhibit excellent results in early detection and prevention of DDoS attacks in 5G-based IoT
systems. In order to avoid service interference, Patel [76] presented AI-Powered Intrusion Detection and
prevention systems in 5G networks.

3.5.3 Jamming Attacks
Jamming attacks seriously threaten 5G and 6G communication networks since the attackers use

interfering signals to interfere. This is particularly important in mmWave networks. Pirayesh and Zeng [77]
offered a comprehensive survey on Jamming Attacks and Anti-Jamming Strategies in Wireless Networks.
Mpitziopoulos et al. [78] provided a general overview of the critical issue of jamming in WSNs and cover all
the relevant work, providing future research directions. Chen et al. [79] provided a comprehensive survey on
various multiple-antenna techniques in physical layer security, with an emphasis on transmit beamforming
designs for multiple-antenna nodes.

3.5.4 Man-in-the-Middle (MITM) Attacks
In 5G and 6G networks, where attackers may intercept and control messages, MITM attacks pose a

serious concern. In their study of machine learning’s application to 5G networks, Arul Stephen et al. [80]
provided models for anomaly detection based on traffic patterns to identify MITM assaults. Bhushan
et al. [81] provided an overview an-in-the-middle attack in wireless and computer networking. In 2022,
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Conti et al. [82] reviewed the literature on MITM to analyse and categorize the scope of MITM attacks,
considering both a reference model, such as the open systems interconnection model.

3.5.5 Spoofing and Impersonation
In 5G and 6G networks, spoofing and impersonation attacks enable hackers to obtain unauthorized

access by imitating reputable equipment or users. Babu et al. [83] presented a comprehensive analysis
of spoofing. Dasgupta et al. [84] discussed a sensor fusion-based Global Navigation Satellite System
spoofing attack detection framework for autonomous vehicles (AVs). Furthermore, it has been determined
that certificate-based security and mutual authentication are essential methods for thwarting these kinds
of assaults.

3.5.6 Vulnerabilities in Wireless Communication Infrastructure
The core network, which handles resource allocation, user authentication, and data management, acts

as the foundation of 5G and 6G communication networks. The attack surface has grown dramatically since
network slicing and virtualization were introduced. Some of the key security threats in 5G and 6G networks
are given in Fig. 5.

• Vulnerabilities in Virtualization: Misconfigurations or vulnerabilities in Hypervisors can compromise
Virtualized Network Functions (VNFs). Attackers could use these flaws to break into networks or obtain
unauthorized access.

• Network Slicing: This technique presents customized networks for certain use cases (autonomous cars,
IoTs, etc.). Cross-slice attacks, which enable attackers to travel laterally across slices, are a possibility if
one slice is compromised.

• Signaling Storms: The likelihood of signaling storms, which may overwhelm the network and cause
denial-of-service (DoS) circumstances, is increased by the high density of connected devices in 5G and
6G networks.

Figure 5: Key security threats in 5G/6G networks
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3.6 6G Threat Landscape
To provide a clearer and more structured understanding of the emerging 6G security landscape, this

section presents specific examples of anticipated threats and their potential implications. Key risks include
AI-driven automated attacks, ultra-low-latency eavesdropping enabled by enhanced sensing, UAV-assisted
denial-of-service attacks, and supply-chain vulnerabilities affecting 6G hardware and software components.
Where available, qualitative and quantitative indicators of threat likelihood and severity from recent studies
are included to contextualize their impact. Table 3 summarizes major threat categories, the associated
network elements, expected impact, and supporting references, offering a concise foundation for risk
assessment in next-generation wireless networks.

Table 3: Illustrative 6G threat landscape and risk indicators

Threat type Affected component Impact/Severity References
AI-powered network

attacks
Base stations/Edge nodes High; may disrupt network

management
[85,86]

Ultra-low-latency
eavesdropping

URLLC links Moderate; compromises
confidentiality

[87]

UAV-assisted DoS attacks RAN/Backhaul High; service unavailability [88]
Supply-chain attacks Network hardware/Firmware Critical; may affect entire

network
[89]

3.7 Overview of BC in the Wireless Communication
Decentralized ledger technology, or BC, keeps transactions safely on a distributed network. Because it

can enhance security, transparency, and data integrity, its application in wireless communication networks,
particularly 5G and 6G, is gaining increasing importance. BC offers ways to protect the many devices most
susceptible to hacking, data manipulation, and privacy violations in forthcoming wireless networks. BC is a
distributed ledger technology (DLT) that maintains a ledger of transactions in a decentralized environment
on several devices. With the ability to handle gigantic amounts of data on billions of networked devices
securely, with surety, and with less overhead, it has its application in wireless communication, particularly
in next-generation wireless networks like 5G and 6G. Due to its decentralized design, free from a point of
failure, BC technology is an important asset in protecting wireless networks against any cyber attacks, ranging
from data tampering, DDoS attacks, and privacy violations.

BC’s capability in lowering single points of failure, network integrity, and trustless interaction allows
BC to be useful for wireless communications. BC is the technology that needs to be used for applications
like smart cities, autonomous vehicles, and large IoT deployments because it is decentralized to process
data in millions of devices securely and enables wireless networks to securely process data in millions of
devices. BC-enabled MECs are particularly useful for managing network resources, encrypting data at the
edge, reducing latency, and improving real-time decision-making. BC technology was also used in wireless
communications to solve data privacy issues, device authentication, and spectrum control. For instance,
eliminating middlemen by BC will enhance security for IoT devices and achieve optimal utilization of
resources. Furthermore, it is important to manage 5G networks through network slicing because BC provides
confidentiality and isolation of various virtual networks from a common shared physical infrastructure. The
key features of BC include the following.
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1. Decentralization: BC is immune to single-point failures due to the fact that it depends on a decentralized
network. The decentralization of wireless communication enhances the security of dispersed edge devices
and limits attack avenues on centralized servers. Decentralized authentication, spectrum management,
and resource allocation are some of the important uses of BC in this field.

2. Immutability: Once committed to a BC, information can’t be erased or altered. This protects the
network records of device identifiers, resource reservation, and transaction logs from being tampered
with or deleted. It has implications for spectrum management, sensitive data protection, and network
slicing compliance.

3. Transparency: BC enables data exchanges and transactions to be traceable by all members of a wireless
network. Decentralization’s transparency enhances accountability and allows trust building in the
management of spectrum resources, device authentication, and data consistency among multiple nodes.

In recent years, using BC integration for wireless networks has been investigated to improve efficiency,
security, and transparency. Among the pioneer works, published in 2023 and 2024, are those that describe the
promises of BC technology for wireless communication. Li et al. [90] studied a BC-based privacy-preserving
and accountable MEC framework for the Metaverse, termed Meta-BMEOC. Zhang et al. [91] investigated a
directed acyclic graph BC-enhanced user-autonomy spectrum sharing model.

Haddad et al. [92] investigated a novel, efficient and secure authentication and key agreement protocol
for 5G networks using BC. Their security analysis illustrated that the proposed scheme is secure and
withstands the known attacks; DOS, DDOS, MITM, hijacking and compromising attacks.

Wijethilaka et al. [93] designed a BC-based secure authentication and authorization framework
for robust 5G network slicing. Li et al. [94] investigated BC-based data security for AI applications in
6G networks.

Rishiwal et al. [95] researched a Exploring Secure vehicle-to-everything (V2X) Communication
Networks for Human-Centric Security and Privacy in Smart Cities.

Furthermore, Valitabar et al. [96] investigated efficient resource allocation for BC-enabled MEC: a joint
optimization approach.

In 2024, Padmavathy and Goyal [97] presented a BC based secure cross layer design for wireless sensor
networks. Alzubi et al. [98] investigated BC-enabled security management framework for MEC. The study
demonstrated how BC enhances data integrity and privacy protection by securing data transfers between
edge devices, cloud servers, and IoT sensors. Moreover, Table 4 presents overview of some recently published
works and the key metrics in BC technologies for securing MEC.

Table 4: Overview of key metrics in BC technologies for securing MEC

Study reference Security
level

Latency Throughput Energy
efficiency

Scalability Data
integrity

Privacy
preservation

Computation
overhead

Li et al. [90] Yes Yes No No No Yes Yes Yes
Zhang et al. [91] Yes No Yes Yes No No No No

Haddad et al. [92] Yes No No No Yes Yes No No
Wijethilaka et al. [93] Yes Yes Yes No No Yes No No

Li et al. [94] Yes Yes Yes Yes Yes No No No
Rishiwal et al. [95] Yes Yes No No No Yes Yes No
Valitabar et al. [96] Yes Yes Yes Yes Yes No No Yes

Padmavathy et al. [97] Yes Yes No No Yes Yes No No
Alzubi et al. [98] Yes Yes Yes No No Yes No No
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3.8 Overview of FL Techniques in Wireless Communication
FL is a machine learning paradigm that permits cooperative model training by several edge devices or

dispersed data sources, all while maintaining localized data. This addresses privacy concerns and bandwidth
constraints since there is no need to move big or sensitive datasets to a centralized server [90,93].

EC allows data to be stored and computed closer to the point of demand, i.e., at the network edge instead
of a central data center. This aids in bandwidth optimization, real-time processing improvement, and latency
reduction [91,94]. FL was intended mainly to solve privacy issues in applications with extremely sensitive
user data, such as mobile devices and healthcare settings. Google first introduced it in 2016 by McMahan
et al. [99]. In the context of 5G/6G networks, where vast volumes of data are created across many IoT devices,
FL has become increasingly important by separating data from the core training process. FL gathers just
model changes, such as gradients, on a central server, iteratively improving the model rather than centralizing
data from all devices. This structure is especially appropriate for 5G and 6G networks, where a wide range of
IoT devices produce copious amounts of sensitive data Kairouz et al. [100].

One of the FL’s key advantages is its privacy-preserving data analytics, which makes it extremely relevant
to sensitive industries like healthcare and telecommunications. It allows collaborative training without
requiring the release of raw data. Niknam et al. [101] proposed a model that makes sure that gadgets, from IoT
sensors to smartphones, can improve the accuracy of the global model without running the risk of invading
privacy. To improve data safety during model updates, FL systems frequently use strategies like secure
multiparty computation (SMPC) and differential privacy Bonawitz et al. [102]. Furthermore, FL provides
real-time threat monitoring, allowing nearby devices to monitor any threats and react quickly. These devices
can detect abnormalities or assaults by continually evaluating local data; these can then be handled at the
network’s edge to stop them from spreading further, Amiri and Gunduz [103]. This feature is necessary to
keep security in the intricately linked world of contemporary wireless networks.

As shown in Fig. 6, the FL process begins with the FL server initializing the global model parameters and
distributing the model to all connected clients through wireless networks. Each client then trains the model
locally using its own dataset (e.g., text messages) and subsequently uploads the updated model parameters
back to the FL server. The server aggregates these updates from all clients to create a refined global model.
This process is repeated iteratively, with the server broadcasting the updated global model to clients until the
model reaches convergence.

3.8.1 FL in Privacy Preserving Data Analytics
Conventional machine learning methods involve centralizing data for training, which raises significant

privacy problems, especially in industries with highly sensitive data, such as healthcare, banking, and
smart cities. FL significantly reduces the risk of data breaches by letting users’ data stay on their devices
and only exchanging model changes or gradients. Further improvements to privacy are made possible by
methods like Differential Privacy and Secure Multi-Party Computation (SMPC), which add noise to model
updates and securely compute shared functions without disclosing specific data points. FL has been used
in a number of healthcare situations to safeguard private patient data. The following Table 5 summarizes
various privacy-preserving techniques used in FL, highlighting the authors, methods, descriptions, and
potential applications.
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Figure 6: FL in wireless communication

Table 5: Overview of privacy-preserving techniques in FL

Author(s) &
Year

Technique Description Applications

Bonawitz
et al. [104]

FL Decentralized model training
without sharing raw data.

Healthcare, IoT,
Finance

Kairouz
et al. [100]

Differential Privacy
(DP)

Adds noise to ensure individual
data privacy.

Healthcare, finance

Yu and
Cui [105]

Secure Multi-Party
Computation (SMPC)

Private computation across
multiple parties.

Healthcare, finance

Abadi
et al. [106]

DP-SGD Adds noise to gradients during
training.

Healthcare, sensitive
data

Fereidooni
et al. [107]

Secure Aggregation Securely aggregates updates from
multiple devices.

Large-scale networks

McMahan
et al. [99]

Federated Averaging
(FedAvg)

Aggregates local models without
raw data sharing.

Healthcare, finance

Fan et al. [108] Hybrid FL with BC Secures model updates via BC. EC, IoT
Huang

et al. [109]
Randomized
Response, FL

Users submit randomized data for
privacy

News
recommendation

Hernandez
et al. [110]

FL Malicious Networks Cloud environment

Liu et al. [111] Federated Transfer
Learning

Combines FL with transfer
learning for privacy.

Finance, smart cities

3.8.2 FL in Smart Healthcare Using EC or IoT
The healthcare industry has increasingly adopted cutting-edge machine learning techniques over the

past few years to enhance care for patients as well as streamline treatment outcomes. FL, a technique that
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preserves patient privacy while supporting collaborative model training across decentralized sources of
data, is one such approach that has been gaining popularity among these technologies. This is especially
important in the healthcare industry because private policies that keep sensitive patient data confidential
are very stringent. Patient information security is further augmented in the training process by adding
privacy-preserving techniques, such as differential Privacy and secure multi-party computation.

FL allows medical facilities to jointly diagnose diseases securely. For instance, Abbas et al. [112]
studied the role of FL in healthcare, highlighting its ability to enable privacy-preserving collaborative
model training across institutions and smart health systems using IoT and wearable devices. They discussed
major challenges, including security threats, data heterogeneity, and scalability and emphasized emerging
privacy-preserving techniques as essential for wider FL adoption and improved healthcare outcomes.
Ramesh et al. [113] used FL with EC called as FLEC to process patient data in a decentralized manner,
helping in healthcare analytics. This study applies FLEC using simulated healthcare data activating alerts
for any defects to observe temperature, heart rate, and SpO2 levels. Lanka and Moodhitaporn [114] used
FL and IoT to enhance the security for smart healthcare. They considered different research work for the
security-enhancing process using FL in IoT enhanced smart healthcare.

FL enables privacy-preserving real-time data collection in continuous health monitoring. Differential
privacy and homomorphic encryption were both used by Das et al. [115] presented a FL-based framework
for wearable-enabled personalized healthcare where they addressed its guiding principles, obstacles, and
possibilities, showcasing its adaptability and potential to enhance patient insights and health care systems.

To ensure patient confidentiality in remote care settings, Iqbal et al. [116] employed Domain adaptive
FL for EC-enabled privacy-preserving MRI analysis. Hakak et al. [117] studied an EC-assisted data analytics
framework that used FL to retrain local ML models using user-generated data. Their framework leveraged
pre-trained models to extract user-customized insights while preserving privacy and Cloud resources.
Ganesh and Ramanaiah [118] delved into the evolution of FL and EC, exploring their convergence in
the context of smart healthcare. It examined various applications of FL and EC within healthcare, from
remote patient monitoring to predictive analytics and personalized medicine. Jia et al. [119] presented
the personalized meta-FL framework for personalized IoT-enabled health monitoring. Ewejobi et al. [120]
provided a mini review on homomorphic encryption for Genomics data storage on a federated cloud.
This provides secure collaborative genetic dataset analysis for disease research while having strong privacy
protection. Yuan et al. [121] proposed an advanced FL framework to train deep neural networks, where the
network is partitioned and allocated to IoT devices and a centralized server. Alasbali et al. [122] integrated FL
in an IoT-enabled EC for privacy-enhanced skin disease classification. FL was shown to be useful in health
monitoring systems by Zhang et al. [123]. They proposed a dropout-tolerable scheme in which the process
of FL would not be terminated if the number of online clients is not less than a preset threshold.

Table 6 below summarizes some of the principal research comparing different FL techniques and related
privacy measures in health applications. Such research shows how FL can provide data-driven insights
without invading the privacy of private health information.

Table 6: Summary of FL techniques and privacy methods in healthcare applications

Author (s) Application Privacy technique Key results
Abbas et al. [112] Smart Healthcare (IoT

devices, wearables, and
remote monitoring)

Security risks Enabled secure training
without centralizing patient

data.

(Continued)
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Table 6 (continued)

Author (s) Application Privacy technique Key results
Ramesh et al. [113] IoT Healthcare FL and EC (IoT) Decentralized patient data

processing
Lanka and Mood-

hitaporn [114]
Smart Healthcare (IoT) FL and IoT Securing the data of

IoT-based sensors using FL
Das et al. [115] Health monitoring Differential Privacy,

Homomorphic
Encryption

Secure real-time monitoring
of patient data.

Iqbal et al. [116] MRI analysis FL and EC Safeguarding patient privacy
Hakak et al. [117] Healthcare data

analytics
FL and EC Preserving privacy

Ganesh and
Ramanaiah [118]

Smart healthcare
systems

FL and EC Remote patient monitoring

Jia et al. [119] Health monitoring FL and IoT-enabled
computing framework

Real-world health
monitoring

Ewejobi et al. [120] Genomic analysis Homomorphic
encryption

Secured inter-institution
genomic analysis.

Yuan et al. [121] Healthcare, IoT FL and IoT Data privacy and Security
Alasbali et al. [122] Skin disease

classification
FL and IoT-EC Protect patient sensitive data

Zhang et al. [123] IoT-Enabled
Healthcare

Homomorphic
encryption

Private data aggregation
from wearables.

3.8.3 FL Applications in Smart Cities
FL, which improves data privacy, scalability, and collaborative learning across urban systems, offers

smart cities several advantages. Regarding data privacy, FL permits local data processing, guaranteeing the
protection of sensitive data, including individual travel habits and energy use. There is less chance of privacy
invasion because just the model parameters are disclosed [100,124]. Moreover, the decentralized structure
of FL is scalable and capable of handling big, heterogeneous datasets produced by a variety of city systems,
such as energy grids, traffic, and other sensors [125,126].

Real-time learning is essential in dynamic urban situations like traffic management, requiring prompt
choices. Without the delay of central systems, FL supports adaptive learning by enabling continuous model
updates directly on edge devices [127,128]. According to Zhang et al., [129] and Myakala et al. [130],
FL promotes interdepartmental cooperation by enabling municipal agencies to exchange views without
disclosing confidential data, strengthening group urban initiatives for traffic reduction and energy saving.

Traffic management is one of the practical uses of FL in smart cities, where information from smart
traffic signals and linked cars enhances forecasts and controls congestion while protecting privacy [124,130].
By evaluating dispersed data from citywide sensors, FL facilitates effective resource distribution for energy
consumption monitoring, lowering expenses and environmental impact [131]. FL facilitates rapid responses
while upholding privacy requirements in public safety by supporting real-time monitoring and incident
detection [132,133]. One of the difficulties is data heterogeneity, which leads to consistency problems in
model convergence due to different formats from environmental devices, energy meters, and traffic sensors.
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This issue is being addressed by continuing research [125,126]. Because sharing model updates across several
devices results in substantial data transfer costs, especially in highly populated locations, communication
overhead is another issue [129,130].

The security of FL models must be improved by countermeasures such as anomaly detection in updates,
even if FL increases data privacy. This is because FL is still susceptible to security risks, including model
poisoning and inference assaults [127,131]. These advancements highlight how crucial FL is to facilitating
safer, more effective, and cooperative smart city operations. Security issues, such as the possibility of model
poisoning, further highlight the necessity for strong countermeasures to guarantee the dependability of FL
applications. Table 7 outlines the main uses and difficulties of FL in the context of smart cities, showing how
this technology makes collaborative, safe, and scalable urban improvements possible.

Table 7: Summary of FL applications in smart cities

Aspect Description References
Data privacy FL enables decentralized processing, keeping sensitive data

like travel patterns and energy usage local, sharing only
model updates.

[100,124]

Scalability FL handles large, diverse data from traffic, energy, and
sensor networks across urban systems.

[125,126]

Real-time learning Supports adaptive edge learning, enabling fast traffic and
service responses without central latency.

[127,128]

Collaborative learning City departments can collaborate securely, improving
strategies in areas like energy conservation without sharing

raw data.

[129,130]

Traffic management Enhances congestion prediction using data from connected
vehicles and smart traffic signals while preserving privacy.

[124,130]

Energy monitoring Aggregates sensor data to optimize energy usage, reduce
costs, and lower environmental impacts.

[131,132]

Public safety Enables real-time surveillance and incident response with
built-in privacy protection.

[132,133]

Data heterogeneity Varying formats across sensors challenge model training; FL
requires tailored solutions.

[125,126]

Communication overhead Sharing frequent updates in dense networks increases data
transfer load.

[126,129]

Security risks FL faces threats like model poisoning and inference attacks;
anomaly detection is critical.

[127,131]

3.9 Consensus Algorithms in 5G/6G Networks
Distributed and edge-based 5G/6G networks require low-latency, secure consensus mecha-

nisms. Table 8 summarizes commonly used algorithms.
PBFT is highly suitable for edge/fog deployments due to low-latency deterministic consensus. PoS can

be applied in hybrid networks, while PoW is generally impractical [134,135].
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Table 8: Consensus algorithms for 5G/6G networks

Algorithm Mechanism Advantages Limitations Suitability
PoW Solve computational puzzles High security High energy, latency Low
PoS Validators by stake Energy-efficient,

lower latency
Risk of centralization Moderate

PBFT Voting-based Low latency, high
throughput

Scalability issues High

3.10 FL Aggregation Techniques
FL aggregates local updates to train a global model without sharing raw data. Two common methods

are FedAvg and secure aggregation.

3.10.1 FedAvg (Federated Averaging)
In FL’s methodology, the FedAvg algorithm (presented in Algorithm 1) is the most widely adopted

aggregation technique. It iteratively updates the global model by averaging locally trained client models,
weighted by the proportion of local data. This ensures scalability across heterogeneous client devices while
maintaining data privacy.

Algorithm 1: FedAvg aggregation [136]
1: Initialize global model w0
2: for each round t = 1, . . . , T do
3: Select subset of clients St
4: for each client k in St do
5: wt

k = ClientUpdate(k, wt)

6: end for
7: wt+1 = ∑k∈St

nk
n wt

k
8: end for
9: function ClientUpdate(k, w)
10: wk = w
11: for each local epoch e do
12: wk = wk − η∇L(wk)

13: end for
14: return wk
15: end function

3.10.2 Secure Aggregation
Secure aggregation protects client updates, revealing only the aggregated model. It is essential for

privacy-sensitive 5G/6G applications [102].

3.11 Ongoing Standardization Efforts and Interoperability in 5G/6G and AI
Ensuring interoperability and standardization in 5G/6G networks and AI-enabled systems is crucial for

large-scale deployment. Several ongoing initiatives aim to harmonize communication protocols, security,
and AI governance.
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3.11.1 Standards and Regulatory Efforts
• IEEE: IEEE 802.11 and 802.15 working groups define wireless communication protocols and interoper-

ability guidelines. IEEE P2413 provides architectural standards for IoT systems, facilitating integration
across heterogeneous devices.

• 3GPP: 3GPP Release 17 and 18 introduce 5G enhancements for URLLC, massive IoT, and AI/ML
integration, promoting inter-network compatibility and edge AI support.

• NIST: The National Institute of Standards and Technology (NIST) provides guidelines for AI system
evaluation, including trustworthiness, robustness, and secure FL frameworks [137].

• EU AI Act: The European Union’s AI Act proposes risk-based regulatory frameworks to ensure AI
transparency, accountability, and interoperability in cross-border applications [138].

3.11.2 Proposed Interoperability Framework
To achieve seamless integration between heterogeneous networks and AI systems, a three-layer

interoperability framework can be considered as:

1. Communication Layer: Standardized protocols (e.g., 5G NR, IEEE 802.11/15) with secure handover and
cross-network compatibility.

2. Data and AI Layer: FL and secure aggregation techniques with standardized model representation
formats (e.g., ONNX, PMML) to enable cross-platform AI deployment.

3. Governance Layer: Alignment with international guidelines such as NIST AI Risk Management
Framework and EU AI Act to ensure ethical, transparent, and auditable AI operations.

This framework ensures interoperability across multi-vendor networks, heterogeneous edge nodes, and
AI-enabled applications in 5G/6G, supporting global scalability while adhering to emerging regulations.

3.12 Emerging Trends in 5G/6G BC and AI Security
Emerging technologies in 5G/6G networks are evolving at different time scales. For clarity, we categorize

these trends into short-term and long-term developments, along with their rationale, as shown in Table 9.

Table 9: Short-Term vs. Long-Term Trends in 5G/6G Blockchain and AI security

Trend Horizon Key trends Rationale
Short-Term Lightweight blockchain frameworks,

edge-enabled federated learning,
AI-assisted network optimization and

anomaly detection.

Focused on immediate deployment
needs, ensuring high efficiency,

improved privacy, reduced latency, and
compatibility with existing 5G

infrastructures.
Long-Term Quantum-safe encryption methods,

decentralized AI governance models,
and cross-domain interoperability

across heterogeneous 6G ecosystems.

Aimed at preparing for quantum-era
threats, ensuring long-term scalability,

regulatory compliance, and secure
integration of ultra-dense and

autonomous networks.

3.12.1 Short-Term Trends
Following are some of the short-term trends:
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• Lightweight BC: Optimized for low-power edge devices and constrained IoT nodes, enabling efficient
consensus and data integrity without high computational overhead [139].

• Edge-Based FL: Deploying FL at the network edge reduces latency, preserves data privacy, and enables
near-real-time analytics.

• AI-Assisted Network Optimization: Use of ML for traffic prediction, resource allocation, and anomaly
detection in 5G/6G networks.

Rationale: These trends focus on practical deployment in the near term, leveraging existing technologies
and standards to enhance efficiency, privacy, and security in edge and IoT-enabled 5G/6G networks.

3.12.2 Long-Term Trends
Following are some of the long-term trends:

• Quantum-Safe Encryption: Preparing networks for future quantum threats by developing crypto-
graphic algorithms resistant to quantum attacks.

• Fully Decentralized AI Governance: Integration of BC and AI to create autonomous, auditable, and
trustless AI ecosystems.

• Cross-Domain Interoperability Frameworks: Standardized architectures enabling seamless integra-
tion of 5G/6G networks, IoT, and AI across multiple vendors and regulatory regimes.

Rationale: These long-term trends anticipate future technological and regulatory challenges, focusing on
scalability, post-quantum security, and global interoperability to ensure sustainable, resilient 5G/6G systems.

3.13 Scalability Analysis of BC in 6G Networks
Scalability is a critical concern for BC integration in 5G/6G networks, particularly due to the massive

number of connected devices and high transaction rates. Two main approaches have emerged to improve
BC scalability:

• Sharding: Divides the network into smaller, parallel-processing shards, reducing the load per node and
increasing overall throughput [140].

• DAG-Based Architectures: Directed Acyclic Graph (DAG) structures such as IOTA or Tangle allow
multiple transactions to be confirmed in parallel without requiring strict sequential block validation,
improving TPS and lowering latency [141].

3.13.1 Transaction Throughput vs. Node Count
Table 10 compares the approximate throughput of different BC architectures with varying network sizes,

based on recent studies.

Table 10: Comparative analysis: Transactions Per Second (TPS) vs. node count

Architecture Node count TPS Reference
PoW (Bitcoin) 1000 ∼7 [134]

PBFT 50 ∼5000 [135]
Sharding-BC 1000 ∼10,000 [140]
DAG (IOTA) 1000 ∼100,000 [141]

PoS (Ethereum 2.0) 1000 ∼1000 [142]
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3.13.2 Discussion
As the Table 10 shows, traditional PoW BC suffer from low TPS and limited scalability, making them

unsuitable for high-density 6G networks. PBFT provides higher throughput but is limited by the number
of nodes due to communication overhead. Emerging solutions such as sharding-based BC and DAG-based
architectures can support the massive number of nodes and high transaction rates expected in 6G.

• Sharding achieves scalability by processing transactions in parallel shards, suitable for mid-term
deployment in 6G edge networks.

• DAG-Based BC offers near-linear TPS scaling with the number of nodes and is promising for long-term
6G deployments, especially in IoT-dense environments.

Overall, integrating sharding or DAG-based BC with EC and FL frameworks can ensure secure, scalable,
and efficient data processing in future 6G networks.

3.14 Differential Privacy in FL for 5G/6G Networks
FL often requires privacy preservation when aggregating model updates across distributed devices.

Differential Privacy (DP) introduces controlled noise to model updates to prevent leakage of sensitive data.
However, applying DP can degrade model accuracy, and tuning the privacy budget ε is critical.

3.14.1 Empirical Observations
Studies have shown the trade-off between privacy and accuracy, as presented in Fig. 7:

• Lower ε (stronger privacy) increases noise, which may reduce model accuracy.
• Higher ε (weaker privacy) retains model performance but exposes more information.

Figure 7: Illustration of the trade-off between privacy budget (ε) and model accuracy in FL. Adaptive DP dynamically
adjusts noise to minimize accuracy loss

3.14.2 Adaptive Differential Privacy
To mitigate accuracy degradation, adaptive DP techniques dynamically adjust noise levels based on: 1)

Model convergence rate, 2) Importance of specific updates, and 3) Sensitivity of the data being aggregated.

3.14.3 Discussion
This discussion highlights key insights and implications derived from our study, with a particular focus

on privacy-preserving mechanisms in federated learning for 5G/6G edge scenarios.
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• In 5G/6G edge scenarios, adaptive DP allows privacy-preserving FL while supporting latency-
sensitive applications.

• The privacy-accuracy trade-off can be tuned per application (e.g., IoT telemetry, autonomous vehicles).
• Combining DP with secure aggregation ensures robust protection against data inference attacks, even

when nodes are compromised.

Legal-Technical Co-Design for GDPR Compliance
BC’s inherent immutability can conflict with GDPR’s “right to erasure” (Article 17), creating legal

challenges for storing personal data on-chain. To address this, legal-technical co-design approaches can be
employed. Sensitive data can be stored off-chain in encrypted form with only cryptographic hashes main-
tained on-chain, allowing selective deletion without compromising auditability. Pruning and compression
techniques, such as Merkle tree pruning or STARK-based proofs, can reduce on-chain storage requirements
while retaining verifiable state. Additionally, selective encryption with key revocation can render personal
data inaccessible, effectively achieving GDPR compliance. These strategies enable a balance between regu-
latory adherence, system performance, and verifiability, particularly benefiting resource-constrained edge
nodes [53–55].

4 Interoperability Challenges of FL and BC
While FL and BC can complement each other to enhance security and privacy in 5G/6G networks,

their integration poses several interoperability challenges. BC consensus mechanisms can introduce latency
that delays FL model aggregation, potentially affecting convergence rates. Lightweight consensus protocols
or asynchronous aggregation strategies can mitigate this issue. Additionally, combining decentralized FL
with BC can lead to significant storage and computational overhead as the number of participants or
model complexity increases. Techniques such as model compression, sharding, and off-chain storage of
model parameters can alleviate scalability bottlenecks. Effective co-design of FL aggregation protocols and
BC architectures is thus essential to balance latency, throughput, security, and storage efficiency, enabling
practical and scalable deployments.

5 Integration of Digital Twins, FL, BC, and EC for Securing 6G Applications
The emergence of 6G networks promises ultra-high data rates, extremely low latency, and pervasive

connectivity, enabling revolutionary applications such as autonomous transportation, holographic commu-
nications, industrial automation, and intelligent healthcare. However, due to the distributed, heterogeneous,
and latency-sensitive nature of 6G services, such developments introduce unprecedented security and
privacy challenges. Combining emerging paradigms, including digital twins (DT), FL, BC, and MEC, can
provide a synergistic platform to address these challenges. A DT is a virtual replica of a physical system that
is refreshed with real-time data. DTs in 6G can model the users’ states, networks’ states, and environmental
states to enable predictive analysis and decision-making in real-time [143,144].

The integration of DT, FL, BC, and MEC forms a multi-layered architecture that is well-adapted to
the 6G foundation principles of responsiveness, intelligence, and trust. Fig. 8 presents a framework for this
integration. The lowest layer is shrouded by EC, e.g., MEC, which enables distributed data processing near
where data is being generated, relieves the burden on centralized cloud resources, and complies with the
latency requirements. It is also the foundation on which FL is implemented, which leverages the distributed
nature of MEC to facilitate model training without sensitive data centralization.

DTs reside in the middle layer, tightly connected to the edge infrastructure. Each physical device (e.g.,
user device, intelligent car, or medical sensor) is represented by a digital twin that observes its activity,
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environmental data, and operational readings. Prediction models complement twins learned using FL to
enable anticipatory decision-making (e.g., predicting vehicular traffic or patient deterioration) [145]. BC
manages the trust and coordination layer, which secures model update exchanges and transaction history
through smart contracts and consensus rules. BC provides non-repudiation, audibility, and tampering
resistance. BC is significant in scenarios when edge nodes would be controlled by different administration
domains (e.g., factories, traffic control, hospitals). This integration not only deals with security attacks but
also enables secure collaboration among heterogeneous nodes.

Figure 8: DT, MEC, FL, and BC integrated framework

5.1 Potential Use Cases of the Proposed Integrated Framework
This integration of DT, FL, BC, and EC can be depicted via heterogeneous 6G-enabled applications. This

includes the following use cases [145,146].

1. Smart healthcare (Healthcare 5.0)
DT can represent patient physiological variables such as heart rate, glucose level, and blood pressure,
updated in real-time by wearable sensors. Predictive diagnosis is done using the twins. FL makes
learning models shift locally in patient data, while keeping it private. BC makes sensitive health data
private, grants access control to smart contracts, and audits medical data exchanges. EC performs
initial processing (e.g., filtering the ECG signal) at bedside terminals, enabling fast response in case
of emergencies.

2. Autonomous driving
DTs of internal system (e.g., engine, sensors) and external world (e.g., traffic environment) are fitted
in vehicles. They facilitate real-time decision-making. Vehicles learn to update their driving models
(e.g., path planning, obstacle detection) without sharing raw sensor data via FL. These model updates
are recorded via BC for integrity verification and cooperation among several transport authorities
and vehicle manufacturers. Embedded edge nodes in vehicles and roadside units supply latency-
sensitive computation.

3. Smart cities
DTs model city infrastructures, including traffic lights, power grids, and water networks. FL offers city-
wide prediction, e.g., predicting traffic congestion or power spikes. BC offers open data-sharing across
departments (e.g., transport, energy) and verifies the source of control decisions. Edge devices, e.g.,
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MEC servers embedded with smart meters and traffic cameras, perform local computation to provide
quick feedback and control.

4. Industrial IoT (IIoT)
In manufacturing, DTs simulate production lines and the health status of machines. FL enables on-site
learning from the behavior of machines for predictive maintenance and production optimization. BC
offers secure supply chain logging of data, authenticity of components, and usage logs of machines. EC
helps in real-time quality control and anomaly detection.

5. Immersive media and XR
DTs replicate user motions, environmental dynamics, and device interactions for applications such as
holographic communication and interactive gaming. FL allows real-time personalization of immersive
experiences. BC supplies ownership and traceability of virtual assets, and EC supplies ultra-low-
latency rendering and media synchronization. Table 11 summarizes the key benefits of the integrated
technologies for the previously mentioned applications.

Table 11: Role of DT, MEC, FL, and BC in 6G use cases

Use case Role of DT Role of FL Role of BC Role of MEC
Smart

healthcare
Real-time patient

monitoring
Local model training

on patient data
Secure health
record sharing

On-site data
processing

Autonomous
driving

Virtual vehicle
modeling

Collaborative model
updates

Tamper-proof logs In-vehicle edge
nodes

Smart cities Infrastructure
modeling

City-wide traffic
forecasting

Transparent
resource allocation

Real-time control
systems

Industrial IoT Machine state
replication

Predictive
maintenance models

Supply chain data
integrity

On-site fault
detection

Immersive
media and XR

User/environment
modeling

Experience
personalization

Digital asset
provenance

Low-latency
rendering

5.2 Workflow of the Framework
Fig. 9 presents a systematic workflow architecture of 6G application security by leveraging the integra-

tion of DT, FL, BC, and EC. The workflow describes the processing of sensor data, learning from it, securing it,
and utilizing it to enhance the robustness, privacy, and intelligence of 6G systems. The proposed framework
consists of the following main layers.

1. Sensor devices (Data collection layer)
In the lowest layer, smart sensor devices such as IoT sensors, wearables, and embedded systems
collect real-time information from the physical world. These sensors include biomedical sensors in a
healthcare environment, LiDAR, radar, and cameras in autonomous vehicles, utility meters in a smart
city, and industrial sensors in a production line. Such sensors continuously send raw data in the form of
temperature, movement, audio, and health parameters, which are the sensory backbone of a 6G-enabled
system. Data in this layer can be spoofed, tampered with, or subjected to man-in-the-middle attacks
when not treated securely.

2. Edge node with EC (Data preprocessing and filtering)
The second stage comprises edge nodes, e.g., mobile base stations, smart gateways, and vehicular
edge devices, equipped with EC capabilities. These nodes filter, normalize, and preprocess raw sensor
data. Also, this layer extracts useful features for downstream operations and performs latency-sensitive
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tasks like real-time detection, event triggering, or local control. EC avoids sending sensitive data
unnecessarily across the network, reducing bandwidth usage and exposure risks. Furthermore, it
enables confidentiality through local data processing and reduces reliance on centralized cloud servers.

3. Local DT instance (Real-time virtualization)
A DT is at the edge of each physical thing (e.g., patient, car, smart meter). The twins contain a real-
time, synchronized digital copy of the physical system, enabling simulation of future states, predictive
diagnostics (e.g., vehicle or patient anomaly detection), and context-aware responses and situational
awareness. DTs are equipped with processed data from edge nodes and replicate decision outcomes
based on past and current conditions. Also, DTs provide semantic consistency and are essential for
anomaly detection of suspicious behaviors that indicate cyber-physical attacks.

4. Training of FL (Coordinated edge model updates)
The edge nodes and corresponding DTs contribute to FL by training local ML models on preprocessed
and contextualized data, avoiding raw data exchange to maintain privacy, and generating encrypted
or masked model updates (e.g., gradients or weights). This process takes place among a number of
distributed edge devices concurrently, allowing each device to update a global model of intelligence
without ever disclosing the user data. FL invokes data sovereignty and differential privacy and guards
against model inversion attacks as well as data leakage.

5. BC for model aggregation (Trust infrastructure layer)
Model updates generated by each node are sent to a BC network that verifies each update with
digital signatures, uses consensus algorithms, e.g., proof of stake, practical Byzantine fault tolerance,
to validate updates, and cancels smart contracts to automate reward, access, and verification. This
prevents tampering, poisoning attacks, and provides a zero-trust architecture for the FL pipeline.
BC ensures integrity, traceability, and non-repudiation of model updates and enables decentralized
trust management.

6. Global model update (Knowledge fusion)
Once validated by BC consensus, the model updates are combined into a global model through
secure methods, e.g., federated averaging, returned to edge nodes and DTs, and refined iteratively
over time through successive rounds of learning. This global intelligence is then put to use at the
application level, driving intelligent 6G applications such as autonomous control systems, immersive XR
environments, or personalized health diagnostics. Furthermore, this layer facilitates uniform and secure
delivery of acquired intelligence, which is crucial for collaborative action in distributed settings. Table 12
summarizes the key functions of each component of the framework.

Figure 9: Workflow of DT, MEC, FL, and BC integrated framework
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Table 12: Summary of the main functions of the key components of the framework

Component Function Security benefit
Sensor devices Data sensing and streaming Potential entry point for physical

security hardening
EC Data filtering, latency control Preserves confidentiality and enables

real-time defense
DT Real-time mirroring, simulation,

anomaly detection
Predicts and identifies abnormal

behavior
FL Decentralized model training Prevents data exposure and supports

privacy-preserving AI
BC Immutable, consensus-based trust

management
Ensures tamper-proof collaboration

and auditability
Global model update Fusion of knowledge and

deployment
Delivers verified intelligence to all

participants

5.3 Security Analysis of the Framework
The integrated DT-FL-BC-MEC model significantly enhances security by leveraging the unique

strengths of each component.

1. Confidentiality and privacy
As 6G networks become increasingly integrated into critical infrastructures such as healthcare, trans-
portation, and smart government, the confidentiality of data and users’ privacy take center stage.
The highly distributed nature of these systems implies that vast amounts of sensitive information
are generated and processed at the network edge. Traditional centralized security solutions are no
longer sufficient, as they expose data to the risk of interception and misuse while being transmitted to
central servers.
FL in this context is a privacy-aware model that stores raw data locally, hence minimizing exposure.
This is necessary in the case of privacy-concerned applications such as healthcare and personal mobility.
EC also reduces privacy threats by offering localized data analysis and storage. In addition to this,
BC technology also optimizes data access control by using smart contracts that apply fine-grained
authorization and unalterable audit trails. Together, these technologies ensure a multi-layered defense
mechanism that ensures confidentiality of the data but also maintains the usefulness of information in
making intelligent decisions.

2. Integrity and authenticity
Authenticity and integrity are necessary to ensure that data, control messages, and AI models in a 6G
environment remain tamper-free and authentic. In applications such as autonomous vehicles or real-
time diagnosis in healthcare, a slight change in the data or an unauthorized control message can prove
catastrophic. Thus, end-to-end data integrity becomes mandatory, which cannot be waived.
BC is one of the key elements of data integrity that maintains a tamper-proof record of all activity,
including sensor logs, control messages, and AI model updates. Distributed verification protects
against unauthorized updates and traceable entries allow auditing. In addition, attempted tampering
is detectable with ease. DTs enable the monitoring of system behavior over time compared to forecast
models and raise an alarm in real-time about divergence that may be a sign of data tampering or
interference by an adversary. Thus, it can continuously authenticate physical system behavior, detecting
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anomalies that could be indicators of spoofing or tampering. Furthermore, FL enables model updates to
be traced back to source and permits malicious updates to be filtered through reputation mechanisms
or Byzantine-resistant aggregation protocols.

3. Availability and resilience
In future 6G systems, continuous availability of services and system fault or attack recoverability
are critical to maintain user confidence and system reliability. For mission-critical use cases, e.g.,
industrial automation, and emergency response applications, service unavailability or reduced quality
is unacceptable. Resilience, therefore, must be designed into all facets of the system.
EC naturally enhances availability by distributing processing burdens across localized nodes, minimiz-
ing the likelihood of a central point failure. Even in the event of a loss of connectivity with the central
cloud, edge nodes can continue to operate independently. Additionally, DTs offer predictive analytics by
predicting potential system crashes or cyberattacks ahead of time in the physical world. The distributed
nature of BC architecture further strengthens resilience through the guarantee that no single node holds
essential data alone. This cooperative synergy ensures that services are robust, self-healing, and can
function under stress or in partial system breakdown.

5.4 Trade-Offs in BC and FL for 5G/6G Security
While BC and FL each provide compelling advantages for securing 5G and 6G networks, both

technologies introduce inherent trade-offs that can hinder large-scale deployment. Table 13 summarizes the
major trade-offs, together with mitigation strategies offered by hybrid BC–FL approaches.

Table 13: Trade-offs in BC and FL with hybrid mitigation strategies

Technology Advantages Trade-offs/Limitations Mitigation via Hybrid BC+FL
BC Immutability and

transparent
record-keeping

High latency and energy
consumption in consensus

protocols; scalability
bottlenecks with massive IoT

devices

Lightweight consensus
algorithms (e.g., PBFT, DPoS)
combined with FL aggregation

reduce redundant on-chain
transactions

BC Decentralized trust
and tamper-evident

storage

Increased storage/computation
overhead at edge nodes

FL minimizes raw data
exchanges, reducing BC

transaction load
FL Privacy-preserving

collaborative model
training

Reduced model accuracy under
non-IID data and unbalanced

client participation

BC ensures secure, auditable
model aggregation and

incentivizes honest
participation

FL Real-time threat
detection at the edge

Susceptible to poisoning,
backdoor, and free-rider attacks

BC provides verifiable update
logs, reputation scoring, and

consensus-based validation of
local models

Hybrid
BC + FL

Secure and
privacy-preserving

distributed
intelligence

Higher communication and
synchronization overhead

Adaptive model compression,
hierarchical FL, and lightweight

BC reduce costs while
preserving robustness
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Discussion: BC’s immutability and decentralized design make it highly suitable for trust management
and secure logging in wireless networks; however, its reliance on consensus protocols (e.g., Proof of Work,
Proof of Stake) can result in latency, scalability, and energy consumption bottlenecks. On the other hand,
FL enables privacy-preserving data analytics without raw data sharing, but is vulnerable to model poisoning
attacks and performance degradation when client data is heterogeneous.

Hybrid frameworks that integrate BC and FL have recently emerged as promising solutions. For
example, Sameera et al. [147] presents a comprehensive survey of FL-based intrusion detection approaches.
It reviews the foundations of FL, highlights its advantages for privacy-preserving threat detection, and
examines key challenges such as non-IID data, communication overhead, and security vulnerabilities. The
study also discusses emerging solutions and outlines future research directions for deploying FL in real-
world intrusion detection systems. Similarly, Ali et al. [148] present a survey on the integration of BC and
FL for Internet of Things. They first used the notion of BC and its application in IoT systems. Then they
described the privacy issues related to the implementation of BC in IoT and present privacy preservation
techniques to cope with the privacy issues. Second, they introduced the FL application in IoT systems, devise
a taxonomy, and present privacy threats in FL. Also, Ruckel et al. [149] present an FL system that incorporates
BC technology, local differential privacy, and zero-knowledge proofs. Their implementation of a proof-of-
concept with multiple linear regressions illustrates that these state-of-the-art technologies can be combined
to a FL system that aligns economic incentives, trust, and confidentiality requirements in a scalable and
transparent system.

By combining BC’s transparency and auditability with FL’s privacy-preserving model training, these
hybrid schemes offer scalable, verifiable, and resilient security mechanisms for next-generation networks.

5.5 Trust Management
Establishing trust in highly distributed, multi-actor systems, such as those envisioned in 6G, is chal-

lenging. Devices, users, organizations, and services will not have prior relationships but must communicate
securely and efficiently. Conventional identity and access control mechanisms are often inadequate for such
dynamic and heterogeneous systems. Integrating BC enables establishing a decentralized trust model in
which every transaction, update, or interaction is verifiable and recorded irrevocably.

Smart contracts allow the automatic enforcement of trust policies without human intervention. DTs
enable contextual awareness and behavioral baselines for all physical and virtual things, enabling intelligent,
semantic trust modeling. FL contributes to the scenario by enabling trusted AI collaboration without private
data sharing. Together, all of these components form a zero-trust environment in which trust is continuously
observed and enforced through transparent and verifiable means. Fig. 10 presents the secure communication
flow over the proposed framework. Furthermore, Table 14 summarizes the key contributions of the security
enhancements of the proposed technology-integrated framework.

5.6 Storage Optimization in Edge-Integrated BC
BC ledgers are inherently immutable, which poses challenges for edge nodes with limited storage

capacity in 5G/6G networks. Without proper optimization, continuously growing ledgers can overwhelm
resource-constrained devices, impacting performance and scalability.
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Figure 10: Security over the DT, MEC, FL, and BC integrated framework

Table 14: Security analysis of DT, MEC, FL, and BC framework

Security attribute Contribution of
DT

Contribution of
FL

Contribution of
BC

Contribution of
MEC

Confidentiality Behavior
monitoring

Local data
retention

Smart contract
enforcement

Local data
processing

Integrity Real-time
validation

Authentic model
updates

Immutable ledger System
redundancy

Availability Fault prediction Distributed
training

Decentralized
storage

Edge redundancy

Trust management Behavioral
expectations

Participant
authentication

Consensus-based
trust

Localized decision
making

5.6.1 Pruning Techniques
Pruning selectively removes historical transaction data that is no longer necessary for current operations

while preserving cryptographic proofs required for auditability. Common approaches include:

• State Pruning: Only the latest state (e.g., account balances or aggregated model updates in FL) is
retained, while older transactions are discarded. Merkle proofs ensure that removed transactions
remain verifiable.

• Checkpointing: Periodically record a checkpoint summarizing ledger state, enabling nodes to discard
older blocks while maintaining trust in the chain.

5.6.2 Compression and STARKs
Advanced cryptographic proofs such as STARKs (Scalable Transparent Arguments of Knowledge)

allow:

• Verification of large computation histories using succinct proofs.
• Significant reduction in the amount of data stored on edge nodes, while retaining full auditability and

tamper-resistance.
• Post-quantum security properties, ensuring long-term robustness in 6G networks.
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5.6.3 Discussion
By combining pruning and STARK-based compression, as shown in Fig. 11:

• Edge nodes maintain a lightweight ledger without losing the ability to verify past transactions.
• Integration with FL ensures that only the necessary model updates or aggregated data are stored locally,

reducing communication and storage overhead.
• Such techniques make BC feasible for resource-constrained environments, supporting real-time 5G/6G

applications like IoT, vehicular networks, and edge AI.

Figure 11: Edge-integrated BC with pruning and STARK-based compression: only essential states are stored locally,
while proofs ensure full auditability

5.7 Potential Security Solutions for 5G/6G Networks
The security challenges in 5G/6G wireless networks are significant due to their ultra-dense connectivity,

heterogeneous devices, and high data rates. To address these challenges, integrating FL with BC has emerged
as a promising solution. FL enables distributed model training while keeping raw data local, thus mitigating
privacy risks and reducing exposure to centralized attacks. BC provides decentralized trust, ensures data
integrity, prevents single-point failures, and introduces incentive mechanisms for cooperative participants.
The combination of BC and FL further strengthens network security by ensuring privacy-preserving, tamper-
proof, and reliable operations. Additionally, cryptographic techniques such as homomorphic encryption,
differential privacy, and quantum-safe protocols can be applied to enhance confidentiality and robustness in
critical applications, including the Internet of Things (IoT) and Internet of Vehicles (IoV).

6 Lessons Learned and Future Research Trends
This section provides the key lessons learned from previous studies and highlights emerging research

trends that can guide future investigations in BC, Fl and 5G/6G.

6.1 Lessons Learned
The following highlights the main takeaways from the survey:

1. Need for adaptive security frameworks: 5G and 6G networks are dynamic environments that are difficult
for traditional, static security techniques to handle. BC and FL integration calls for flexible frameworks
that can change to accommodate new threats, network architectures, and upcoming technologies.
For example, integrating BC for real-time mitigation with AI-driven threat detection might greatly
improve security.

2. Interdisciplinary innovation: BC and FL for 5G/6G security require interdisciplinary cooperation to
be deployed successfully. Innovations that combine the concepts of EC, distributed systems, artificial
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intelligence, and cryptography have shown greater success rates in thwarting threats like data tampering
and DDoS attacks. This implies that future research should involve greater cross-domain collaborations.

3. Importance of lightweight and sustainable solutions: Lightweight solutions that reduce computational
overhead and energy consumption are necessary due to the growing deployment of edge devices in 5G
and 6G. Green computing techniques, including BC systems that use sharding or FL models tailored for
low-power edge devices, should be incorporated into future security designs.

4. Ecosystem-wide standardization: A significant barrier has been identified as the lack of consistency in
the application of FL and BC across 5G/6G infrastructures. To guarantee smooth implementation in
various contexts, industry and academia must collaborate to create internationally accepted protocols
and compatible frameworks.

5. Enhancing trust through federated systems: In decentralized networks, trust is vital. Consortium-based
BC models or federated BC systems have the potential to balance stakeholder trust while resolving
performance issues. For instance, combining reputation-based BC technology with hierarchical FL can
produce safe trust models for extensive Internet of Things applications.

6. In addition, as discussed in Table 13, both BC and FL introduce inherent trade-offs that must be carefully
balanced in real-world deployments. Hybrid BC-FL frameworks represent a promising research direc-
tion, as they combine the privacy-preserving intelligence of FL with the transparency and auditability
of BC. Future work should explore lightweight consensus mechanisms, hierarchical FL architectures,
and adaptive model compression to further mitigate communication overhead and latency, thereby
enhancing the scalability of such systems in practical 5G/6G environments.

7. Challenges with Consensus Mechanisms in MEC:
Scalability: Traditional blockchain consensus mechanisms like PoW and PoS may struggle to scale
effectively in MEC environments due to the large number of edge devices and the dynamic nature of
mobile networks.

• Resource Constraints: Edge devices often have limited computational power, memory, and battery life,
making high-computation consensus mechanisms unsuitable.

• Latency: Consensus mechanisms need to meet the low-latency requirements of MEC applications, such
as real-time data processing and IoT device coordination.

• Security and Trust: Ensuring security and trustworthiness in a decentralized manner without overload-
ing edge nodes is a significant challenge.

6.2 Future Research Trends
Despite notable progress, some of the key challenges remain unresolved; this subsection outlines future

research trends that can address these gaps and drive innovation.

1. Integration of BC with cross-silo FL in 6G
Explore how BC can facilitate privacy-preserving collaboration among multiple service providers,
industries, or governments through cross-silo FL models in 6G environments.

2. Lightweight BC frameworks for edge-based FL in 5G/6G
Develop lightweight, resource-efficient BC architectures tailored for edge devices participating in FL
within low-latency 6G networks.

3. AI-driven consensus mechanisms for FL
Design intelligent consensus algorithms that dynamically adjust based on network traffic, trust scores,
and FL performance to optimize BC performance in real-time communication systems.
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4. Quantum-resilient BC protocols for 6G security
As quantum computing emerges, secure BC protocols that are resistant to quantum attacks will be vital
for long-term FL-6G ecosystems.

5. Energy-efficient FL and BC synergy
Investigate optimization strategies for reducing the energy consumption of BC operations and FL
model training on resource-constrained 5G/6G edge devices.

6. Scalable incentive mechanisms for participation in FL over BC
Create reputation-based or tokenized incentive schemes using BC smart contracts to encourage long-
term, honest participation in FL tasks.

7. Standardization of BC-FL frameworks for multi-domain 6G applications
Develop interoperable frameworks and standards to support adoption across heterogeneous domains,
such as autonomous vehicles, smart grids, healthcare, and finance.

8. Adaptive privacy-preserving mechanisms for dynamic 6G environments
Propose flexible privacy-preserving models that adapt to changing network conditions, mobility
patterns, and user contexts in 5G/6G networks.

9. Real-time FL model auditing and traceability via BC
Enable real-time model auditability, provenance tracking, and rollback mechanisms using transparent
BC logs in federated training pipelines.

10. Secure multi-hop communication in federated edge networks using BC
Design BC-enhanced secure routing protocols to support FL across multi-hop, decentralized 5G/6G
edge infrastructures.

11. Consensus mechanisms are a critical component of blockchain-enabled MEC systems, ensuring secure,
decentralized, and reliable operations. However, selecting and optimizing these mechanisms to suit
the unique demands of MEC remains an ongoing area of research. Future developments in this area
will likely focus on scalability, resource efficiency, and maintaining security in diverse and dynamic
EC environments.

12. To optimize blockchain-enabled MEC systems, researchers may explore some hybrid consensus mech-
anisms that combine the strengths of various protocols. For example, combining PoS for economic
efficiency with PBFT for security can provide a balance between performance and security. Other
approaches include developing lightweight consensus algorithms specifically designed for EC, which
can minimize computational overhead and reduce latency while maintaining robust security features.

7 Conclusion
This paper has comprehensively reviewed the integration of BC and FL as transformative technologies

for addressing the pressing security challenges in 5G/6G wireless networks. These next-generation networks
bring unprecedented connectivity, speed, and scalability, and expose vulnerabilities that demand innovative
solutions. BC’s decentralized and immutable architecture provides robust mechanisms to mitigate threats
such as DDoS attacks, data tampering, and impersonation. At the same time, FL ensures privacy-preserving
model training and real-time anomaly detection. BC and FL’s convergence offers not only strong security
solutions but also a path to achieving the full potential of 5G/6G networks in creating secure, intelli-
gent, and scalable communication environments. This survey highlights the synergistic potential of these
technologies in securing wireless communication infrastructures, highlighting real-world implementations
and their scalability across diverse applications, from IoT ecosystems to autonomous vehicles and smart
cities. However, issues like computational overhead, energy efficiency, and the development of lightweight
consensus mechanisms remain critical barriers to widespread adoption. Future research must focus on
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addressing these issues, exploring hybrid frameworks, and incorporating quantum-safe encryption and
AI-driven threat mitigation.
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