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ABSTRACT: Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular
subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via
immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity.
This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for
classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks
(MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were
fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparam-
eter tuning, including learning rate adjustment and layer freezing strategies, was applied to optimize performance.
Among the evaluated models, ViT_Base_Patch16_Clip_224 achieved the highest test accuracy (94.44%), with equally
high precision, recall, and F1-score of 0.94, demonstrating excellent generalization. MobileNet_V3_Large achieved the
same accuracy but showed less training stability. In contrast, VGG-16 recorded the lowest performance, indicating
a limitation in its generalizability for this classification task. The study also highlighted the superior performance of
the Vision Transformer models over CNNs, particularly due to their ability to capture global contextual features and
the benefit of CLIP-based pretraining in ViT_Base_Patch16_Clip_224. To enhance clinical applicability, a graphical
user interface (GUI) named “BCMS Dx” was developed for streamlined subtype prediction. Deep learning applied
to mammography has proven effective for accurate and non-invasive molecular subtyping. The proposed Vision
Transformer-based model and supporting GUI offer a promising direction for augmenting diagnostic workflows,
minimizing the need for invasive procedures, and advancing personalized breast cancer management.

KEYWORDS: Artificial intelligence; breast cancer; classification; convolutional neural network; deep learning; hyper-
parameter tuning; mammography; medical imaging; molecular subtypes; vision transformer

1 Introduction
Breast cancer, characterized by the uncontrolled proliferation of abnormal breast cells and often related

to dysregulated estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor
receptor 2 (HER2), is a global health concern affecting both women and, less commonly, men. The World
Health Organization (WHO) reported 2.3 million cases and approximately 670,000 deaths globally in 2022,
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solidifying its position as the second most common cancer worldwide [1,2]. Alarmingly, Asia is experiencing
a rapid rise in breast cancer mortality. In Malaysia, the GLOBOCAN 2022 report identifies breast cancer as
the most prevalent cancer, accounting for 16.2% of all cancer cases, surpassing colorectal (13.8%) and lung
cancer (10.7%) [3].

Accurate molecular subtyping of breast cancer is paramount for effective clinical management and
treatment. Molecular subtypes, initially identified by Perou et al. in 2000 [4], have been refined by The
Cancer Genome Atlas Project (TCGA) into four distinct categories: Luminal A, Luminal B, HER2-enriched,
and Basal-like [5]. A fifth subtype, claudin-low, was later discovered [6,7]. These subtypes exhibit varying
responses to treatment; for instance, luminal tumors often respond to endocrine therapy, HER2-enriched
tumors to targeted antibody therapy, and some aggressive Basal-like or triple-negative tumors to chemother-
apy [8]. Early and precise subtype identification is crucial for personalized treatment strategies and improved
patient outcomes.

Currently, breast cancer subtyping primarily relies on immunohistochemistry (IHC) markers obtained
via invasive needle biopsies. While effective, this procedure can cause patient discomfort, anxiety, and may
not fully capture tumor heterogeneity. Furthermore, IHC’s suitability for large-scale screening and fre-
quent monitoring is limited, impacting population-wide health management and contributing to increased
healthcare costs, analysis time, and patient distress through unnecessary biopsies.

Non-invasive imaging modalities such as mammography, magnetic resonance imaging (MRI), and
ultrasound offer a broader view of tumor heterogeneity without the need for tissue extraction. Mammog-
raphy, specifically, is a cornerstone in both diagnostic and screening contexts, providing two-dimensional
X-ray views (mediolateral oblique (MLO) and craniocaudal (CC)) of the breast [9]. Recent advancements
in radiomics-based breast cancer subtype characterization have shown significant promise, demonstrat-
ing correlations between imaging characteristics and specific molecular subtypes [10]. However, existing
models face challenges including limited and imbalanced data, leading to biases and inaccuracies [11,12].
Moreover, most models primarily focus on benign-malignant classification [13,14], which is insufficient for
guiding treatment decisions, and some developed models or systems lack interpretability, hindering clinical
adoption [10].

To address these limitations, this study aims to develop and evaluate robust classification models for
breast cancer molecular subtypes using digital mammographic images. By leveraging pre-trained deep
learning architectures, including Convolutional Neural Networks (MobileNet_V3_Large and VGG-16)
and Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224), and optimizing their performance
through hyperparameter tuning, we seek to enhance the accuracy and efficiency of breast cancer subtype
classification. The ultimate goal is to provide a reliable, non-invasive diagnostic tool for clinical use,
encapsulated within a user-friendly Graphical User Interface (GUI). This will empower breast radiologists
with a powerful tool for effective molecular subtype identification, leading to improved diagnostic precision,
personalized treatment, and better patient outcomes.

The motivation for this study is driven by the need to improve breast cancer molecular subtype predic-
tion directly from mammographic images, an area that remains underexplored compared to conventional
benign–malignant classification tasks. The main contributions of this work are summarized as follows:

1. Development of a Vision Transformer (ViT_Base_Patch16_Clip_224) framework fine-tuned for molec-
ular subtype prediction, demonstrating strong performance despite the limited dataset size.

2. A comparative evaluation of CNN-based models (MobileNet_V3_Large and VGG-16) and the Vision
Transformer, providing insights into their respective strengths and limitations for mammography
analysis.
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3. Investigation of transfer learning configurations (freezing versus unfreezing layers) and learning rates to
assess their impact on model generalization.

4. Establishment of a balanced augmented dataset of 1440 mammogram images to mitigate class imbalance
and enable fair model evaluation.

5. Critical discussion of limitations—including dataset size, risk of overfitting, and the absence of explain-
able AI—and identification of future research directions such as dataset expansion, integration of
explainability methods, and advanced hyperparameter optimization.

Collectively, these contributions underscore both the potential and the challenges of applying deep
learning, particularly Vision Transformers, to the molecular subtyping of breast cancer from mammography.

2 Literature Review
Recent advancements in artificial intelligence (AI), particularly machine learning (ML) and deep

learning (DL), have significantly improved diagnostic capabilities in medical imaging, including breast
cancer detection and classification. Traditional ML methods have been applied successfully to mammogram
images, often achieving high accuracies. For instance, Khalid et al. [13] reported a 96.49% accuracy using
Random Forest for benign-malignant classification, while Ma et al. [8] utilized a Naïve Bayes classifier for
molecular subtype identification. However, these methods rely heavily on manual feature selection and are
less effective for capturing the complex patterns inherent in medical images.

Deep learning approaches, especially convolutional neural networks (CNNs), offer automated fea-
ture extraction and have demonstrated superior performance in breast cancer imaging tasks. Bobowicz
et al. [14] achieved 82.2% accuracy using ResNet-34 for benign-malignant classification, and Thangavel
et al. [15] highlighted mammography’s potential in early-stage abnormality detection. Several studies have
also explored breast cancer subtyping using DL, with Nissar et al. [11] achieving 90% accuracy using
MobileNet-V3 integrated with attention mechanisms, and Zhang et al. [12] reporting 88.5% using ResNet-50
with modality attention.

More recently, Vision Transformers (ViTs) have emerged as a promising alternative to CNNs due to their
ability to model global dependencies through self-attention mechanisms. Studies by Gheflati & Rivaz [16]
with ultrasound datasets and Zeng et al. [17] who studied breast mass diagnosis reported accuracies of
86.7% and 92.7%, respectively, while hybrid models combining ViTs with CNNs [18] achieved up to 99.22%
accuracy for breast calcifications classifications.
Research Gap Analysis

Despite recent advancements in AI for medical imaging, a significant research gap persists in the accu-
rate and effective classification of breast cancer molecular subtypes directly from mammographic images.
Existing models often focus narrowly on distinguishing benign from malignant tumors, which is insufficient
for guiding the precise, personalized treatment decisions necessitated by different molecular subtypes.
Furthermore, the limited number of studies specifically addressing molecular subtyping via mammography
(only five identified) often suffer from low accuracy or introduce high model complexity that hinders
clinical interpretability and widespread adoption. Table 1 shows a survey of recent state-of-the-artwork of
mammography-based breast cancer classification.

To bridge this gap, there is a clear need for highly accurate yet computationally efficient and interpretable
classification models for breast cancer molecular subtyping. While some attention-mechanism-enhanced
models like MobileNet-V3 have shown promising accuracy (90% in Nissar et al.’s study [11]), their inherent
complexity can be a barrier. Conversely, architectures like VGG-16 have demonstrated exceptionally high
accuracy (up to 98.96%) [19] in the related task of benign/malignant classification, and its fusion with
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Vision Transformers has pushed this even higher (99.22%) [18]. This suggests their untapped potential for
accurate molecular subtyping. Therefore, this study aims to evaluate and compare the performance of pre-
trained Vision Transformers and CNNs (specifically MobileNet-V3 and VGG-16) for breast cancer molecular
subtype classification, seeking an optimal approach that achieves both high accuracy and maintains lower
computational complexity, ultimately leading to a more reliable and user-friendly diagnostic tool.

Table 1: Recent studies on breast cancer classification using mammography

Authors Method Preprocessing methods Dataset Classification Accuracy

Mota
et al.,

2024 [20]
ResNet-101

– Cropping
– Sampling for imbalanced

data (oversampling and
undersampling)

– Data augmentation

– 1397 images
– Mammography

images from
OPTIMAM
imaging data
base

Molecular
subtype 60.62%

Nissar
et al.,

2024 [11]

MobileNet-V3
with

Convolutional
Block Attention

Module

– Cropping and filtering
– Image enhancement

and augmentation
– Image normalization

– 2358 images
– Mammography

Molecular
subtype 90%

Zhang
et al.,

2023 [12]

ResNet 50 with
intra-modality

and
inter-modality

attention
module

– Feature extraction
– Feature map
– Intra-Modality Attention
– Refined feature
– Inter-Modality Attention

– 3360
paired cases

– Mammography
and ultrasound

Molecular
subtype 88.50%

Ma et al.,
2019 [8] Naïve Bayes

– Radiomic
feature extraction

– Normalization
– LASSO feature selection
– Oversampling technique

– 662 images
– Mammography

Molecular
subtype

75% to
80%

Liu et al.,
2023 [21] ResNet 50

– ROI labeling
– ROI segmentation
– Normalization

– 170 lesions
– Mammography

and MRI

Molecular
subtype 53.30%

Saber
et al.,

2021 [19]
VGG-16

– Noise removal
– Histogram equalization
– Morphological analysis
– Threshold

based segmentation
– Image resizing
– Data splitting
– Data augmentation

– 322 images
from MIAS

– Mammography

Benign and
malignant 98.96%

(Continued)
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Table 1 (continued)

Authors Method Preprocessing methods Dataset Classification Accuracy

Boudouh
and

Bouakkaz,
2024 [18]

Vision
Transformer
with VGG-16

– Balance collected data
– Noise reduction and

enhancement filters
– Data augmentation
– Feature extraction

– 1871 images
from
CBIS-DDSM

– Mammography

Benign and
malignant 99.22%

3 Methodology
Fig. 1 illustrates the workflow for developing a breast cancer molecular subtype classification model

using mammographic images. The process begins with pre-processing of raw images, including data
augmentation, resizing and normalization, to enhance model performance and generalization. The prepared
dataset is then randomly divided into three subsets, which are 80% for training, 10% for validation and
10% for testing. In the classification stage, deep learning models, specifically Vision Transformers and
Convolutional Neural Networks, are employed to categorize breast cancer into Luminal, HER2-enriched,
Triple Negative and Normal-like subtypes. Following initial model evaluation, hyperparameter tuning is
conducted to optimize classification accuracy. Finally, a Graphical User Interface (GUI) is developed to
support practical clinical applications.

Figure 1: Research flow chart

3.1 Data Acquisition
The digital mammographic images used in this study were sourced from Hospital Pakar Universiti

Sains Malaysia (HPUSM). The dataset comprises a total of 409 breast images, including both left and
right views, collected between September 2020 and December 2024. The images were initially obtained
in the Digital Imaging and Communications in Medicine (DICOM) format and were subsequently con-
verted to Portable Network Graphics (PNG) format to facilitate the image processing stage. This study
involving human participants was reviewed and approved by the Human Research Ethics Committee
(Jawatankuasa Etika Penyelidikan Manusia) of Universiti Sains Malaysia (JEPeM-USM), reference number
USM/JEPeM/KK/25030246. The study protocol complies with the Declaration of Helsinki, International
Conference on Harmonization Good Clinical Practice (ICH-GCP) guidelines, Council for International
Organizations of Medical Sciences (CIOMS) standards, World Health Organization (WHO) operational
guidance for ethics review, and relevant Malaysian regulations.
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3.2 Image Pre-Processing
3.2.1 Data Augmentation

As the distribution of images across all categories is unequal, this may lead to data bias and reduced
model performance. In this study, data augmentation was performed on the full dataset prior to partitioning
into training (80%), validation (10%), and testing (10%) subsets, using stratified sampling, ensuring that all
four molecular subtypes were proportionally represented in each subset. This strategy was chosen because
the original dataset contained only 409 mammogram images, with noticeable class imbalance. This approach
minimized the risk of subtype imbalance or omission in the evaluation process. By augmenting before
splitting, each subset remained balanced and representative, which is essential for reliable evaluation in
small-sample biomedical studies [22]. The augmentation transformations introduced variations (rotation,
flipping, scaling, etc.) that generated new yet distinct samples, rather than exact duplicates. Data augmenta-
tion specifically geometric transformations were applied (see Fig. 2), resulting in 360 images per class and a
total of 1440 images for training the deep learning models. Therefore, while augmented variants may share
similarity with originals across subsets, this does not constitute harmful data leakage but instead enhances
model robustness under realistic clinical variations [23]. This approach has also been reported as a practical
solution for small medical datasets, where augmentation prior to splitting is sometimes applied to ensure
statistical reliability of evaluation [24].

Figure 2: Original (left) and augmented (right) mammographic image with: (a) random horizontal flipping; (b)
random rotation; (c) random affine transformation incorporating rotation and translation

3.2.2 Image Resizing
Most pre-trained deep learning models, including Vision Transformers and CNNs, require input images

of a fixed size to ensure compatibility with their architecture. In this study, all mammographic images were
resized to 224 × 224 pixels using bilinear interpolation, which balances computational efficiency and image
quality. This resizing helps reduce GPU memory usage and accelerates training and inference. The bilinear
interpolation process is illustrated in Fig. 3 and Eq. (1).

F (x , y) = (1 − a) (1 − b) F (i , j) + a (1 − b) F (i + 1, j) + (ab) F (i + 1, j + 1) + (1 − a) bF(1, j + 1) (1)

3.2.3 Normalization
Normalization is an essential preprocessing step that improves training stability and model performance

by standardizing pixel intensity ranges. In this study, Min-Max scaling (Eq. (2)) was applied to rescale pixel
values to the [−1, 1] range, ensuring consistent input magnitudes across all images. This helps prevent features
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with larger values from dominating the learning process and facilitates faster model convergence.

X_normal ized = (X − X_ min)
(X_ max−X_ min)

(2)

where
X_min is the minimum pixel value in the original input range.
X_max is the maximum pixel value in the original input range.

Figure 3: Illustration of bilinear interpolation calculation [20]

3.3 Model Development
3.3.1 MobileNet_V3_Large

MobileNet-V3 is a lightweight, efficient deep learning architecture designed for high accuracy with
minimal computational resources. This study employs the ImageNet-pretrained MobileNet_V3_Large
variant, chosen for its balance of efficiency and robust performance, making it well-suited for resource-
constrained environments. Its architecture (see Fig. 4a) features depthwise-separable convolutions, which
significantly reduce computation while maintaining accuracy, alongside a Squeeze-and-Excitation (SE)
module for enhanced feature extraction via an attention mechanism [25–27]. The linear bottleneck module
further optimizes activation functions based on input dimensionality for effective feature capturing [28].
MobileNet_V3_Large is particularly effective for cancer detection and demonstrates superior generalization
with limited datasets due to its streamlined design, reducing overfitting compared to larger models like
VGG-19 and ResNet-50 [11].

3.3.2 VGG-16
The VGG-16 network, pre-trained on the ImageNet database, is a robust deep learning architecture

known for its exceptional accuracy, even with smaller datasets, thanks to its extensive initial training [19].
Its architecture (see Fig. 4b) consists of 13 convolutional layers, each using small 3 × 3 receptive fields for
detailed feature extraction. Five 2 × 2 Max pooling layers are interspersed to downsample feature maps and
reduce spatial dimensions. The network concludes with three fully connected layers, and a softmax layer
provides the final class probabilities. All hidden layers incorporate ReLU activation functions to introduce
non-linearity and enhance feature learning [29].
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Figure 4: Convolutional neural networks (CNNs) architectures: (a) MobileNet_V3_Large (b) VGG-16

3.3.3 ViT_B_16
The Vision Transformer (ViT) architecture represents a paradigm shift in computer vision, adapting the

Transformer architecture from natural language processing directly to image data [30]. Unlike traditional
CNNs, ViT treats an image as a sequence of fixed-size, non-overlapping patches (see Fig. 5). These patches
are flattened and linearly projected into an embedding space, combined with learnable position embeddings,
and prepended with a special “classification token” (CLS token) [30,31]. This sequence is then fed into a
Transformer encoder, which features multiple layers, each containing a Multi-Head Self-Attention (MHSA)
mechanism and a Feed-Forward Network (FFN) [32]. The MHSA mechanism is crucial as it allows the
model to capture global contextual relationships between different image patches, a significant advantage
over CNNs’ local receptive fields. Layer normalization and residual connections ensure model stability and
gradient flow. Finally, the output embedding of the CLS token passes through a Multilayer Perceptron (MLP)
head to perform the final classification [32]. The ViT_B_16 model, commonly pre-trained on the ImageNet
dataset, offers a balanced trade-off between computational demands and expressive power, enabling the
transfer of rich, generalized visual features for tasks like breast cancer molecular subtype classification [30].

3.3.4 ViT_Base_Patch16_Clip_224
This study also utilizes the ViT_Base_Patch16_Clip_224 variant of the Vision Transformer [33]. Like

other ViT models, it processes images using patch embedding, positional encoding with a classification
token, a Transformer encoder, and an MLP head [30]. A key distinguishing feature is its pre-training
strategy, CLIP_224, which indicates initialization with weights from Contrastive Language-Image Pre-
training (CLIP) [34]. CLIP learns highly generalized visual representations by training on a massive dataset
of 400 million image-text pairs, aligning visual concepts with natural language semantics (see Fig. 6). This
extensive and diverse pre-training equips ViT_Base_Patch16_Clip_224 with a robust understanding of visual
features, making it highly adaptable and efficient for fine-tuning on domain-specific medical datasets like
those for breast cancer molecular subtype classification [34].
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Figure 5: Vision transformer architecture

Figure 6: Contrastive language-image pretraining (CLIP)

In short, Convolutional Neural Networks (CNNs), such as VGG-16 and MobileNet-V3, have been
widely adopted in medical imaging due to their efficiency in extracting hierarchical spatial features and
their relatively low computational cost. Their strengths lie in capturing local texture and edge information,
which is particularly useful for lesion detection in mammograms. However, CNNs are inherently limited
by their locality bias and pooling operations, which can reduce their ability to capture global contextual
dependencies. In contrast, Vision Transformers (ViTs) leverage self-attention mechanisms to model long-
range feature relationships across the entire image, making them more suitable for capturing complex tissue
patterns and subtle inter-class differences in breast cancer subtyping. Despite this advantage, ViTs typically
require larger datasets and higher computational resources to achieve optimal performance.

The computational complexity of the proposed framework is primarily determined by the under-
lying neural architectures. For a standard Convolutional Neural Network (CNN), the complexity of a
convolutional layer can be expressed as:

lO(K2 ⋅ Cin ⋅H ⋅W ⋅ Cout) (3)
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where K is the kernel size, Cin and Cout are the input and output channel dimensions, and H ×W represents
the spatial resolution of the feature map.

In contrast, the Vision Transformer (ViT) introduces complexity from its self-attention mechanism. For
an image partitioned into N patches with embedding dimension D, the multi-head self-attention layer has a
complexity of:

O (N2 ⋅D) +O(N ⋅D2) (4)

The quadratic term O(N2⋅D) arises from the pairwise attention score computations, which becomes
the dominant cost for larger patch counts. Given that the input mammograms were resized to 224 × 224
pixels and divided into 16 × 16 patches (yielding N = 196), the self-attention computation remains tractable
in practice.

The pretrained ViT_Base_Patch16_Clip_224 model balances accuracy and efficiency, requiring fewer
FLOPs compared with deeper CNNs (e.g., ResNet-101), while providing stronger global feature representa-
tion. This trade-off highlights that while ViT introduces quadratic attention complexity, the reduced patch
count and optimized architecture make the approach computationally feasible for clinical use.

3.4 Hyperparameter Settings
This section details the key hyperparameters used during model training, as summarized in Table 2.

These settings were consistently applied across all proposed architectures to ensure a fair and valid
comparative analysis. Besides, to evaluate the effect of different training configurations, experiments were
conducted by freezing and unfreezing all layers of the model except the final classification head for adapting
the pretrained model to the four-class subtype task. Freezing the layers indicates keeping the pretrained
weights unchanged during training, allowing only the final classifier to learn, whereas unfreezing allows
all layers of the model to be fine-tuned, enabling the network to learn task-specific features from the new
dataset. Each configuration was trained with 0.001 and 0.00001 initial learning rate for Cosine Annealing
Learning Rate scheduler to dynamically adjust the learning rate throughout training. These settings have
been shown in prior studies to provide stable convergence and prevent overfitting when adapting pretrained
networks to small medical datasets [35,36]. While this study was limited to a narrow search space due to
computational resources, future work will incorporate broader exploration of hyperparameters, including
alternative optimizers, batch sizes, dropout rates, and weight decay, to establish optimal fine-tuning strategies
for CNN and Vision Transformer models.

Table 2: Summary of hyperparameter settings

Category Hyperparameter Value Category Hyperparameter Value

Fixed Input image size (224, 224) Variable Layers trainable – All layers frozen
– All layers unfrozen

Classifier head
dropout 0.3

Loss function CrossEntropyLoss Initial learning rate – 0.001
– 0.00001

Optimizer Adam

(Continued)
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Table 2 (continued)

Category Hyperparameter Value Category Hyperparameter Value

Weight decay (L2) 0.0001 Model architecture

– MobileNet_V3_Large
– VGG-16
– ViT_B_16 and
– ViT_Base_Patch16_Clip_224

Learning rate
scheduler CosineAnnealingLR

Scheduler T_max 30 epochs
Batch size 32

Epochs 100

3.5 Performance Evaluation
The performance of the classifiers is evaluated using a 4 × 4 confusion matrix, which provides a detailed

comparison between predicted and actual classifications across four distinct classes. This matrix enables the
calculation of essential metrics such as True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) for each class [37]. The 4 × 4 structure directly illustrates the distribution of correct
predictions and misclassifications, allowing for a comprehensive evaluation of the quadruple-class model’s
performance. Besides, the performance parameters such as accuracy, precision, recall, specificity and F1-
score are calculated to assessed the performance of classifier, as shown in Table 3.

Table 3: Formula of performance parameters

Parameters Accuracy Precision Recall Specificity F1-score

Formula TN + TP
TN + FN + FP + TP

TP
TP + FP

TP
TP + FN

TN
TN + FP

2 × Recal l × Precision
Recal l + Precision

During preliminary trials, we observed that some models, particularly VGG-16, achieved perfect (100%)
training accuracy under certain configurations. This phenomenon is not indicative of data leakage but rather
reflects the model’s strong capacity to memorize the relatively small augmented dataset (1440 images) when
trained for 100 epochs. Importantly, validation and testing accuracies remained lower, clearly demonstrating
that the generalization gap arises from overfitting. This observation underscores the limitation of dataset
size in medical imaging and highlights the necessity of larger and more diverse datasets in future research to
mitigate overfitting and improve clinical applicability.

4 Results and Discussion

4.1 Performance of Convolutional Neural Networks (CNNs)
4.1.1 Performance of MobileNet_V3_Large

The performance of the pre-trained MobileNet_V3_Large model was significantly influenced by layer
freezing strategies and initial learning rates (see Table 4). Freezing all layers resulted in modest to poor
performance (e.g., 67.36% testing accuracy with a 0.001 learning rate and 44.44% with 0.00001), indicating
underfitting due to limited adaptation to the new dataset. In stark contrast, unfreezing all layers, especially
with an initial learning rate of 0.001, yielded superior results, achieving 94.44% testing accuracy and
93.75% validation accuracy with low losses, signifying robust generalization. This optimal configuration also
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achieved consistently high average precision, recall, and F1-scores of 0.94. Analysis of the loss and accuracy
curves over epochs (see Fig. 7) showed rapid initial learning and convergence to high, stable performance
by 100 epochs. However, a notable loss spike and corresponding accuracy dip in the validation and testing
sets are observed around epoch 55. Upon closer inspection, this fluctuation may be attributed to transient
instability in the optimization process, potentially caused by large gradient updates, sensitivity to class
imbalance, or exposure to a more complex minibatch due to stochastic sampling. Importantly, the model
quickly recovered and stabilized in subsequent epochs, suggesting that the chosen learning rate and optimizer
provided sufficient corrective adjustment. While the temporary instability did not affect final convergence,
it underscores the sensitivity of MobileNet_V3_Large to training dynamics, highlighting the importance of
careful learning rate tuning and monitoring of gradient behavior in future work.

Table 4: Results of convolutional neural networks (CNNs)

Model MobileNet_V3_Large VGG-16

Model layers Freeze all Unfreeze all Freeze all Unfreeze all

Initial learning rate 0.001 0.00001 0.001 0.00001 0.001 0.00001 0.001 0.00001

Training Accuracy 0.8047 0.4583 1.0000 1.0000 0.9861 1.0000 1.0000 1.0000
Loss 0.5171 1.2867 0.0022 0.0129 0.0453 0.0246 0.0256 0.0039

Validation Accuracy 0.7153 0.5000 0.9375 0.9306 0.7708 0.7500 0.6528 0.9097
Loss 0.7825 1.2955 0.3822 0.3232 1.1031 0.7781 3.8289 0.6641

Testing

Accuracy 0.6736 0.4444 0.9444 0.8819 0.7431 0.7222 0.5417 0.8472
Loss 0.8773 1.3217 0.2486 0.4198 1.4379 0.8336 3.6788 0.4789

Average precision 0.68 0.43 0.94 0.88 0.77 0.72 0.56 0.85
Average recall 0.67 0.44 0.94 0.88 0.76 0.72 0.54 0.85

Average F1-score 0.67 0.43 0.94 0.88 0.76 0.72 0.54 0.85

Figure 7: Loss and accuracy curve for the best-performing pretrained MobileNet_V3_Large model

4.1.2 Performance of VGG-16
Table 4 also details the performance of the pre-trained VGG-16 model, revealing that its optimal training

conditions differed from MobileNet_V3_Large. When VGG-16 layers were frozen, the model achieved
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respectable testing accuracies (e.g., 74.31% with 0.001 learning rate), with lower learning rates improving loss
stability. In contrast, unfreezing all layers with a 0.001 learning rate led to severe overfitting and very poor
generalization (54.17% testing accuracy). However, the best overall performance (84.72% testing accuracy,
90.97% validation accuracy, and lowest losses) was achieved when unfreezing all layers with a much lower
initial learning rate of 0.00001. This highlights VGG-16’s greater sensitivity to learning rate during full fine-
tuning, requiring very small values to prevent catastrophic forgetting and ensure stable convergence. For
this optimal configuration, average precision, recall, and F1-score all reached 0.85. The learning curves
(see Fig. 8) demonstrated rapid training accuracy to 100%, with validation and test accuracy maintaining
high performance. It is noteworthy that VGG-16 achieved perfect training accuracy (100%) under several
configurations, even with frozen layers. This reflects the model’s high capacity to memorize the relatively
small augmented dataset (1440 images), rather than genuine task generalization. The discrepancy between
perfect training accuracy and lower validation/testing accuracy indicates overfitting, not data leakage. This
phenomenon highlights the challenge of limited dataset size in medical imaging and underlines the need
for larger, more diverse datasets in future work. After their initial descent, the validation and testing loss
curves fluctuate but remain relatively stable during the final 20 epochs. Besides, the test loss remains
consistently lower than the validation loss in the later epochs, this could be due to the specific characteristics
or distribution differences between the test and validation datasets.

Figure 8: Loss and accuracy curve for the best-performing pretrained VGG-16 model

4.2 Performance of Vision Transformers (ViTs)
4.2.1 Performance of ViT_B_16

Table 5 details the performance of the pre-trained Vision Transformer models, which proved highly
sensitive to fine-tuning strategies and learning rates. For Vision Transformer Base-16 (ViT_B_16) model,
when layers were frozen, moderate performance was observed (71.53% testing accuracy with 0.001 learning
rate), with lower rates significantly degrading results, indicating that a higher learning rate was necessary
for the classification head. Conversely, the “Unfreeze all” strategy with a 0.001 learning rate led to extremely
poor performance due to training instability. However, reducing the initial learning rate to 0.00001 under
the “Unfreeze all” configuration yielded the best overall results, achieving 90.97% testing accuracy and
96.53% validation accuracy with remarkably low losses. This highlights that full fine-tuning of ViT_B_16
requires a very small learning rate for stable updates and effective adaptation. For this optimal setting, average
precision, recall, and F1-score reached between 0.90 and 0.91. The corresponding learning curves (see Fig. 9)
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demonstrated rapid convergence, stable high performance for validation and testing, and notably lacked the
divergences seen in CNNs, indicating robust generalization.

Table 5: Results of vision transformer (ViTs)

Model ViT_B_16 ViT_Base_Patch16_Clip_224

Model layers Freeze all Unfreeze all Freeze all Unfreeze all

Initial learning rate 0.001 0.00001 0.001 0.00001 0.001 0.00001 0.001 0.00001

Training Accuracy 0.7865 0.4253 0.5677 1.0000 0.7821 0.4323 0.6962 1.0000
Loss 0.5819 1.2497 0.9724 0.0022 0.5652 1.2480 0.7449 0.0000

Validation Accuracy 0.7569 0.4514 0.4583 0.9653 0.8056 0.5417 0.4653 0.9444
Loss 0.6421 1.2310 1.4167 0.2533 0.5538 1.1609 1.7111 0.3859

Testing

Accuracy 0.7153 0.4792 0.3611 0.9097 0.7292 0.4861 0.3056 0.9444
Loss 0.7352 1.2581 1.7036 0.3407 0.6433 1.2278 2.1510 0.3315

Average precision 0.71 0.48 0.36 0.91 0.74 0.48 0.30 0.94
Average recall 0.70 0.48 0.36 0.90 0.73 0.49 0.31 0.94

Average F1-score 0.70 0.47 0.34 0.90 0.73 0.47 0.30 0.94

Figure 9: Loss and accuracy curve for the best-performing pretrained ViT_B_16 model

4.2.2 Performance of ViT_Base_Patch16_Clip_224
Table 5 also summarizes the ViT_Base_Patch16_Clip_224 model’s performance, highlighting its sensi-

tivity to hyperparameters due to its CLIP pre-training. Under the “Freeze all” strategy, a 0.001 learning rate
yielded moderate performance (72.92% testing accuracy), outperforming a lower rate (48.61%), indicating a
need for a higher learning rate for the new classification head. Conversely, with “Unfreeze all,” a 0.001 learning
rate resulted in severely poor performance (30.56% testing accuracy) due to destabilization of the vast
parameters. However, reducing the learning rate to 0.00001 under “Unfreeze all” achieved the best results:
94.44% validation and testing accuracy, negligible training loss, and peak average precision, recall, and F1-
scores of 0.94. This underscores that fine-tuning CLIP-pretrained ViTs demand very small learning rates to
preserve acquired knowledge and ensure stable optimization. The learning curves (see Fig. 10) showed rapid
training convergence, strong testing generalization, though validation loss occasionally rose, potentially
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indicating mild overfitting to the validation set or dataset differences. Although the training confusion matrix
(Fig. 11a) shows perfect classification, it indicates overfitting, where the model memorized the small training
dataset during 100 epochs of fine-tuning. The more reliable indicators of generalization are the validation
and test sets (Fig. 11b,c), where the model achieved strong but not perfect performance. This distinction is
crucial, as overfitting is a common issue in deep learning with limited medical datasets [38].

Figure 10: Loss and accuracy curve for the best-performing pretrained ViT_Base_Patch16_Clip_224 model

Figure 11: Confusion matrix for the best-performing pretrained ViT_Base_Patch16_Clip_224 model: (a) training set;
(b) validation set; (c) testing set

Although ViT_Base_Patch16_Clip_224 achieved 94.44% accuracy, precision, recall, and F1-score on
the test set, this outcome should be interpreted carefully. Medical imaging research is often constrained by
relatively small datasets, particularly for specialized tasks such as molecular subtyping [36]. This limitation,
combined with the subtle visual overlap between certain subtypes (e.g., Normal-like vs. Luminal), means that
the reported performance may partly reflect dataset-specific adaptation rather than universal robustness.
Nevertheless, the results provide a strong proof-of-concept, suggesting that pretrained Vision Transformers
can extract meaningful features even from modest datasets. Future work will focus on validating this
approach using larger, multi-institutional cohorts to better assess true clinical applicability. The confusion
matrices (Fig. 11a–c) further support the model’s effectiveness, demonstrating perfect classification on the
training set and minimal errors on both validation and testing sets.
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A consistent misclassification pattern was observed across models, frequently mistaking normal mam-
mograms for luminal breast cancer and vice versa, with up to six samples misclassified in some models.
This recurring error is attributed to textural similarities between normal dense breast tissue and luminal
breast cancer, where dense tissue obscures tumors and luminal subtypes often lack distinctive morphological
features, making differentiation difficult [39,40]. Furthermore, the 2D nature of mammography contributes
to these challenges by superimposing tissues, which can create artificial densities mimicking lesions and
complicating accurate classification [41]. To illustrate this challenge, Fig. 12 presents a representative luminal
mammogram (with the tumor region of interest highlighted) alongside a normal mammogram from
the dataset. Both images exhibit dense parenchymal patterns with comparable texture and brightness
distributions, visually demonstrating why the models—and even radiologists—may find these cases difficult
to distinguish.

Figure 12: Example of misclassification challenge: (a) luminal mammogram with tumor ROI highlighted; (b) normal
mammogram with dense breast tissue

4.3 Comparative Analysis of Model Performances VGG16, MobileNet and ViT
MobileNet_V3_Large, under its optimal configuration, achieved the same peak test accuracy (94.44%)

as ViT_Base_Patch16_Clip_224. However, its training curve (Fig. 7) revealed instability with noticeable
fluctuations around epoch 55, suggesting less reliable convergence. In contrast, ViT_Base_Patch16_Clip_224
consistently converged to high performance with minimal volatility, supporting its superior robustness.
Therefore, while MobileNet showed competitive peak accuracy, the Vision Transformer demonstrated
more stable generalization. Importantly, as no statistical significance testing was conducted, these compar-
isons should be interpreted as descriptive observations rather than definitive claims. Future work should
incorporate repeated trials and statistical analyses to better establish the relative performance differences.

In addition to reporting overall accuracy, precision, recall, and F1-score, model performance was
further evaluated at the subtype level. Table 6 summarizes per-class metrics for ViT_Base_Patch16_Clip_224,
MobileNet_V3_Large, and VGG-16 across training, validation, and testing datasets. The results indicate
that ViT_Base_Patch16_Clip_224 achieved consistently high precision and recall across all four sub-
types in the test set (≈0.97 for HER2-Enriched and Triple Negative; ≈0.92 for Luminal and Normal).
MobileNet_V3_Large also demonstrated competitive performance, although recall for the Luminal subtype
decreased to 0.86, suggesting some sensitivity to class variability. By contrast, VGG-16 exhibited greater
instability, particularly for the Luminal subtype (precision ≈ 0.82, recall ≈ 0.88), and overall lower consistency
across subtypes. This per-class evaluation demonstrates that while aggregated metrics appear strong, detailed
subtype-level analysis reveals critical differences that must be considered in clinically oriented applications.
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4.4 Comparative Analysis of Model Performance against Previous Studies
This section compares the proposed ViT_Base_Patch16_Clip_224 model’s performance against previous

studies in breast cancer subtype classification using mammographic images, as displayed in Table 7. The
model achieved an excellent testing accuracy of 94.44%, which is higher than the reported performance
of prior methods, including Nissar et al.’s study [11], MobileNet-V3 with an attention module by 4.44
percentage points. While direct benchmarking across studies is constrained by differences in datasets and
experimental settings, these results suggest that the Vision Transformer offers competitive and potentially
superior performance for mammogram-based classification. This improvement can be attributed to the
Transformer’s ability to capture global contextual information, a key advantage over traditional CNNs, as well
as the robust and generalized visual features derived from large-scale CLIP pre-training on diverse datasets.
Taken together, this work demonstrates the promise of Vision Transformers in this limited research domain
and highlights their potential for developing more accurate diagnostic and decision-support tools.

Table 6: Per-subtypes class performance metrics for ViT, MobileNet, and VGG-16 across training, validation, and
testing datasets

ViT_Base_Patch16_Clip_224 MobileNet_V3_Large VGG-16

HER2 Lum Nor TN HER2 Lum Nor TN HER2 Lum Nor TN

Training

Acc. 1 1 1 1 1 1 1 1 1 1 1 1
Prec. 1 1 1 1 1 1 1 1 1 1 1 1
Rec. 1 1 1 1 1 1 1 1 1 1 1 1
F1 1 1 1 1 1 1 1 1 1 1 1 1

Validation

Acc. 1 0.95 0.94 0.99 0.938 0.938 0.938 0.938 0.972 0.857 0.938 1
Prec. 1 0.94 0.87 0.97 1 0.91 0.85 1 0.972 1 0.882 1
Rec. 1 0.86 0.92 1 1 0.83 0.92 1 0.972 0.857 0.938 1
F1 1 0.9 1 0.99 1 0.87 0.88 1 0.972 0.923 0.909 1

Testing

Acc. 0.986 0.958 0.958 0.986 0.944 0.944 0.944 0.944 0.833 0.757 0.829 0.897
Prec. 0.972 0.917 0.917 0.972 0.95 0.91 0.97 0.95 0.882 0.824 0.853 0.946
Rec. 0.972 0.917 0.917 0.972 1 0.86 0.92 1 0.833 0.875 0.935 0.972
F1 0.972 0.917 0.917 0.972 0.97 0.89 0.94 0.97 0.857 0.849 0.893 0.959

Note: Subtypes: HER2 =HER2-Enriched, Lum=Luminal, Nor=Normal, TN=Triple Negative. Performance Metrics:
Acc. = Accuracy, Prec. = Precision, Rec. = Recall, and F1 = F1-Score.

Table 7: Summary of classification performance from previous studies compared to the proposed model

Authors Method Accuracy
Mota et al., 2024 [20] ResNet-101 60.62%
Nissar et al., 2024 [11] MobileNet-V3 with Convolutional Block Attention Module 90%
Zhang et al., 2023 [12] ResNet 50 with intra-modality and inter-modality attention module 88.5%

Ma et al., 2019 [8] Naïve Bayes 75% to 80%
Liu et al., 2023 [21] ResNet 50 53.3%
Proposed method Pretrained ViT_Base_Patch16_Clip_224 94.44%
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4.5 Graphical User Interface (GUI)
To demonstrate the potential for clinical deployment, a proof-of-concept GUI application (“BCMS

Dx”) was developed (Fig. 13a,b) using Tkinter in Python, with Visual Studio Code as the development
environment. The GUI integrates the ViT_Base_Patch16_Clip_224 model and supports single-image and
batch predictions for common formats, including DICOM. Outputs include predicted subtypes, confidence
scores, and basic visualization tools. While this interface streamlines workflow and facilitates preliminary
usability testing, it is presented here primarily as an example of how the trained model could be translated
into a practical diagnostic aid.

Figure 13: The “BCMS Dx” GUI application: (a) single image prediction interface with uploaded mammographic image
and results; (b) batch image prediction interface with uploaded mammographic images and results

5 Conclusion
This study successfully developed and optimized deep learning models, including Vision Transformers

(ViT_B_16, ViT_Base_Patch16_Clip_224) and CNNs (Mo-bileNet_V3_Large, VGG-16), for breast cancer
molecular subtype classification using mammographic images. Optimal performance was consistently
achieved with the “Unfreeze all” fine-tuning strategy, though the best initial learning rate varied by
architecture, with ViTs and VGG-16 preferring 0.00001 while MobileNet_V3_Large favored 0.001. The
ViT_Base_Patch16_Clip_224 model emerged as the top performer, attaining an impressive 94.44% test accu-
racy, matching MobileNet_V3_Large’s best, and surpassing previous studies. This highlights the architectural
advantages of Vision Transformers in capturing global contextual information and the benefits of large-scale,
diverse pre-training with CLIP for robust generalization in medical imaging.

The clinical relevance of this study lies in its potential to augment decision-making in breast cancer
management. Accurate molecular subtype classification is critical for determining targeted therapies and
predicting patient prognosis [42]. Currently, subtype determination relies heavily on invasive biopsy and
histopathological evaluation, which can be time-consuming and resource intensive [43]. The proposed deep
learning framework demonstrates that mammographic images, when analyzed with Vision Transformers
and advanced CNNs, can yield subtype-level insights that complement conventional diagnostic workflows.
While not a replacement for histopathology, such tools could serve as non-invasive, rapid screening aids
to flag high-risk patients, prioritize biopsy candidates, and support clinicians in tailoring personalized
treatment strategies. This underscores the translational value of the proposed system and its potential role
in advancing precision oncology.
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Although the proposed models achieved strong results within our experimental setup, these findings
must be interpreted cautiously due to the small and imbalanced dataset. The test set consisted of approx-
imately 144 images, which limits the robustness of the evaluation and increases the risk of overestimating
performance. Furthermore, the absence of cross-validation or repeated trials restricts the reliability of claims
regarding generalization. Therefore, the reported results should be considered preliminary, serving as a
proof-of-concept that pretrained Vision Transformers can effectively adapt to mammographic subtyping
tasks. Future studies will focus on incorporating larger, more balanced datasets and adopting cross-validation
protocols to ensure stronger statistical validity and more trustworthy clinical generalizability.

However, limitations include a small and imbalanced dataset, the inherent challenge of visualizing
certain tumors in 2D mammograms, and computational constraints preventing the exploration of additional
architectures and larger model variants. The 2D nature of mammography can lead to tissue overlap, obscuring
lesions and contributing to misclassification—particularly between luminal and normal subtypes. Future
work should focus on expanding and balancing datasets, exploring advanced 3D imaging modalities such as
Digital Breast Tomosynthesis (DBT), which acquires multiple projection images to reconstruct thin slices of
the breast, thereby reducing tissue overlapping and improving lesion visibility [39,40]. Furthermore, evaluat-
ing other state-of-the-art architectures (e.g., ResNet, EfficientNet, DenseNet, Swin Transformers, ConvNeXt,
or Mamba, and emerging Vision Transformer variants), integrating multimodal imaging, incorporating
tumor segmentation, and extracting radiomic features could further enhance clinical utility. Overall, this
study establishes a strong foundation for AI-assisted breast cancer diagnosis, offering a non-invasive method
for complex phenotyping and encouraging broader adoption of Vision Transformers in medical imaging.

Although the dataset size was limited, we adopted an augmentation-before-splitting strategy to balance
the classes and ensure representative subsets for training, validation, and testing. This approach, while
sometimes debated, is recognized in medical imaging research as a practical solution for small datasets where
class imbalance and limited samples can undermine statistical reliability [22]. Nevertheless, future work
will focus on expanding the dataset and adopting cross-validation to further strengthen the robustness and
generalizability of the proposed models. Future research will investigate multimodal learning strategies that
incorporate both image features and DICOM metadata to improve predictive accuracy and clinical relevance.

Although the present study reports point out estimates of accuracy, precision, recall, and F1-score,
these values alone may be misleading, particularly for small and non-homogeneous datasets. Reporting
classification performance metrics with 95% confidence intervals (CIs) is considered best practice in
statistical evaluation, as CIs capture the variability in model predictions and provide a range within which
the true performance is likely to fall. Confidence intervals reduce the risk of overinterpreting results that may
be inflated by dataset size, imbalance, or sampling bias. Future extensions of this work will incorporate CI
estimation methods, such as bootstrapping and cross-validation, to provide a more robust and transparent
evaluation of deep learning models in clinical applications.

Another limitation of this study is the restricted hyperparameter optimization process, which was
confined to two learning rates (0.001 and 0.00001) and binary fine-tuning configurations (freezing all
convolutional layers vs. unfreezing all layers). While sufficient for this proof-of-concept, such a narrow search
may not fully capture optimal performance. Future work will employ more systematic tuning strategies,
including k-fold cross-validation and broader hyperparameter exploration (e.g., optimizers, batch sizes,
dropout, weight decay), to enhance the rigor and reliability of the results.

Another promising direction for future work is the integration of explainable AI (XAI) techniques,
such as Gradient-weighted Class Activation Mapping (Grad-CAM) and attention visualization. These
methods can generate heatmaps highlighting the regions of mammograms that most strongly influence the
model’s predictions [44]. Incorporating such visual explanations would help verify whether the models are
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attending to clinically relevant features and enhance interpretability and trustworthiness for radiologists.
This step is particularly important for building confidence in AI-assisted diagnostic tools and improving
their acceptance in clinical practice.
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