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ABSTRACT: The generation of high-quality 3D models from single 2D images remains challenging in terms of accu-
racy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements.
However, building models from scratch is computationally expensive and requires large datasets. This paper presents
a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is
to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions
of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a three-phase
pipeline comprising image acquisition, 3D reconstruction, and refinement. After ensuring the quality of the input image,
a ResNet50 model is used for object recognition, directing the image to the corresponding category-specific model
to generate a voxel-based representation. The voxel-based 3D model is then refined by transforming it into a detailed
triangular mesh representation using the Marching Cubes algorithm and Laplacian smoothing. An experimental study,
using the Pix2Vox model and the Pascal3D dataset, has been conducted to evaluate and validate the effectiveness of the
proposed approach. Results demonstrate that category-specific fine-tuning of Pix2Vox significantly outperforms both
the original model and the general model fine-tuned for all object categories, with substantial gains in Intersection over
Union (IoU) scores. Visual assessments confirm improvements in geometric detail and surface realism. These findings
indicate that combining transfer learning with category-specific fine tuning and refinement strategy of our approach
leads to better-quality 3D model generation.

KEYWORDS: 3D reconstruction; computer vision; deep learning; transfer learning; object recognition; voxel repre-
sentation; mesh refinement

1 Introduction

3D reconstruction is a key area in computer vision, focused on generating accurate 3D models from one
or multiple 2D images. By extracting depth and spatial information, this process enables the representation
of objects and environments in three dimensions, supporting applications across various domains.
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In medical imaging, accurate 3D models of internal organs and structures are essential for precise diag-
nosis and surgical planning. These models enable healthcare professionals to visualize complex anatomical
structures, identify abnormalities, and simulate surgical procedures [1,2]. In robotics, 3D reconstruction
plays a pivotal role in enabling robots to perceive and interact with the physical world. By generating accurate
3D models of environments and objects; robots can perform tasks such as autonomous navigation, object
manipulation, and human-robot interaction [3]. In virtual and augmented reality (VR/AR) applications,
3D reconstruction is used to create immersive digital environments for gaming, training simulations, and
educational experiences [4,5]. In the field of 3D printing, the accuracy of 3D models is crucial for translating
digital designs into physical objects. By precisely capturing the geometry and topology of objects, 3D printing
technology enables the creation of complex and customized products [6,7].

However, the generation of high-quality 3D reconstruction from 2D images poses several challenges.
One of the primary concerns is achieving a high rate of accuracy in the reconstructed models; especially in
fields like medical imaging and robotics where the 3D models must closely align with the real-world objects
they represent. Additionally, completeness is vital to capture all relevant details and ensure the fidelity of the
reconstructed models, particularly in applications like 3D printing and VR, where even minor discrepancies
can have substantial implications. Furthermore, real-time 3D model generation is crucial for applications
such as AR and gaming where responsiveness and interactivity are essential for enhancing user interaction.

In response to these challenges, researchers have explored various approaches. One significant approach
involves refining the existing traditional 3D reconstruction techniques founded on the principles of multi-
view geometry (MVG) [8,9], through advanced mathematical techniques and optimization methods.
Traditional methods encompass approaches such as Structure from Motion (SfM) [10-12], Simultaneous
Localization and Mapping (SLAM) [13,14], Shape from Shading (SfS) [15], Shape from Polarization (S{P)
[16-18], and Multi-View Stereo (MVS) [19,20]. SfM reconstructs 3D structures by estimating camera poses
and matching features across multiple images, while SLAM integrates mapping and localization for real-time
applications. SfS infers object shapes from shading variations, assuming ideal lighting and surface conditions,
and SfP derives surface normals by analyzing polarized light reflection angles, extending its application
from dielectric to metallic objects. MVS, in turn, reconstructs detailed 3D models by leveraging image
correspondences from various viewpoints. Additionally, gathering more data from multiple sources, such as
cameras and sensors, has shown potential for enhancing the accuracy and completeness of 3D models.

While effective, traditional methods face several drawbacks: They rely heavily on precise camera
calibration and complex feature mapping, which restricts their flexibility and makes the reconstruction
process sensitive to errors caused by changes in camera settings and environmental conditions. Additionally,
these methods struggle with reconstructing occluded or self-occluded regions of objects, often requiring
multiple viewpoints and longer processing times to achieve satisfactory results.

Deep learning (DL) techniques have emerged as a promising alternative for 3D reconstruction. Con-
volutional neural networks (CNN) can automatically extract high-level features from images, enabling the
generation of more accurate and robust 3D models. Yet, developing a DL model from scratch requires
significant time and computational resources. Transfer learning offers an efficient solution by utilizing pre-
trained models, which can be fine-tuned on specific datasets. This approach enhances model performance
and adapts it to task-specific requirements, optimizing both resource utilization and development time.

However, a major limitation remains: general-purpose models trained on diverse object categories
often struggle to capture the fine-grained geometry of specific classes, resulting in blurred or incomplete
reconstructions. Recent research has shown that incorporating category-specific knowledge can alleviate
this issue by guiding the model toward the structural and textural regularities of each class. For instance,
Refs. [21,22] demonstrated that learning class-specific pipelines achieve higher accuracy and consistency in
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3D reconstruction, highlighting the importance of specialization. These findings motivate the development
of approaches that combine the efficiency of general-purpose models with the precision of category-
specific adaptation.

Based on this motivation, our study is guided by the following research questions:

1. Is transfer learning an effective strategy for adapting general models to specific object classes?

2. Can category-specific retraining improve the accuracy of 3D reconstruction from a single 2D image?

3. Does the combination of transfer learning and category-specific retraining yields better geometric fidelity
and surface realism compared to general models?

In this paper, we present a transfer learning-based approach for 3D reconstruction from a single 2D
image. The core of our approach involves fine-tuning a pre-trained 3D reconstruction model using a new,
unseen dataset. The innovation lies in specializing the general model to a specific class of objects by retraining
and fine-tuning it with data exclusively related to that class. The goal of this idea is to enhance the accuracy
and quality of the resulting 3D models by creating specialized versions of the original model for each class
of objects.

In addition to the reconstruction operation, our approach incorporates two critical phases: image
acquisition and 3D model refinement. The image acquisition phase ensures high-quality input images,
which serve as a foundation for generating precise 3D models. The refinement phase applies optimization
techniques to improve the geometric and visual quality of the reconstructed 3D models. Together, these three
phases form a pipeline that takes an image as input and produces a good quality 3D model.

The remainder of this paper is structured as follows: Section 2 reviews related works in the field of 3D
reconstruction. Section 3 introduces our proposed deep retraining approach. Section 4 details the evaluation
and validation process. Section 5 discusses the experimental results. Finally, Section 6 concludes the paper,
summarizing the main findings, implications, and future research directions.

2 Related Works

The evolution of 3D modeling has been significantly influenced by technological advancements,
transitioning from traditional techniques to sophisticated DL-based approaches. To overcome the limitations
of traditional methods, DL techniques have emerged as a powerful alternative, offering precise and efficient
3D reconstructions. These methods have demonstrated remarkable capabilities across computer vision tasks
including classification [23], segmentation [24-26], detection and localization [27], recognition [28] and
scene understanding [29]. Early DL approaches focused on single-view depth prediction using CNN [30].
Subsequent advancements led to the development of more sophisticated multi-view reconstruction models,
such as 3D Recurrent Reconstruction Neural Network (3D-R2N2). The integration of generative adversarial
networks (GAN) [31] and variational autoencoders (VAEs) [32], exemplified by (3D-VAE-GAN) [33], further
expanded the capabilities of DL-based 3D reconstruction.

DL has further expanded its influence to encompass diverse 3D representations, including: voxels, point
clouds, and meshes.

Voxel-based methods represent 3D shapes as structured grids of volumetric pixels (voxels), enabling
the use of 3D convolutional neural networks (CNNs) for geometric understanding and reconstruction. One
foundational work in this area is 3D-R2N2, which introduced a recurrent neural network that learns to
predict voxel grids from single or multiple images, allowing progressive refinement of 3D reconstructions.
In [34], Authors extended this idea by incorporating 2.5D sketches—such as depth and normal maps—as
intermediate representations to improve reconstruction accuracy from single images. Further developments
include SLICENet [35], which reconstructs 3D shapes slice-by-slice, enabling more detailed volumetric
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outputs with reduced memory usage. Im2Avatar [36] focused on enhancing the color and texture quality
of voxel-based reconstructions, generating visually rich 3D models from single RGB inputs. Additionally,
3D ShapeNets laid the groundwork for learning deep generative models over voxel grids, using probabilistic
3D shape representations for recognition and reconstruction tasks. These works highlight the strengths of
voxel-based frameworks in providing regular, grid-like structures for leveraging 3D CNNs, although often
at the cost of memory efficiency and resolution.

Despite their simplicity and capability to encode 3D shape and viewpoint information, voxel represen-
tation may not be efficient because it represents both occupied and non-occupied parts of the scene, leading
to high memory consumption and limiting their use in high-resolution reconstruction. To alleviate this, the
Octree Generating Networks (OGN) [37] leverage octree structure to efficiently represent high-resolution
3D volumes within memory constraints. Octrees are particularly effective in representing fine-grained details
of 3D objects with fewer computations, as they can share the same value for large regions of space. However,
both voxels and octree representations fail to maintain the intrinsic properties and surface smoothness of
3D objects.

To overcome the limitations of voxel-based representations, many works have explored point cloud-
based 3D reconstruction. In [38], Authors initiated this direction by proposing a DL framework that
directly predicts point clouds from single RGB images using a Chamfer distance loss. Building upon this,
Authors in [39] introduced the PointNet, an architecture that processes point sets through symmetric
functions, enabling effective 3D classification and segmentation. Subsequent works extended these ideas:
Guo and Li [40] designed an encoder-decoder model for reconstructing 3D shapes from 2D images [6],
Authors proposed a fusion-based approach integrating virtual and real-world data using machine learning
techniques. Collectively, these approaches demonstrate the growing effectiveness and versatility of point
cloud-based representations in 3D vision tasks.

While Point cloud methods excel at capturing local geometric features, they can be affected by
point density variations and may not fully capture the overall structure leading to ambiguity in surface
representation. Consequently, researchers began exploring alternative methods of 3D representation, such
as using mesh structures. These approaches focus on directly predicting 3D vertex coordinates to construct
detailed surface meshes. For instance, Pixel2Mesh [41] generates 3D mesh models from a single RGB image
by progressively deforming a template mesh using graph-based convolutions. Similarly, Mesh R-CNN [42]
extends Mask R-CNN by incorporating a mesh prediction branch that reconstructs object meshes from
multi-view or single-view images within a unified detection framework.

However, the task of learning 3D meshes is highly challenging for two key reasons. First, seamless
extension of deep learning methods to irregular representations remains elusive, which poses a major
obstacle to achieving accurate reconstructions. Additionally, the complexity of 3D data presents a multitude
of challenges, including noise, missing data, and accuracy issues. This is why many studies have focused on 3D
shape completion and inpainting techniques. In [43], Authors proposed a high-resolution shape completion
method that uses DNN to infer both global structures and fine-grained local geometry, effectively recon-
structing detailed 3D meshes from partial inputs. In a complementary direction, Authors in [44] introduced
a framework combining 3D generative adversarial networks (GANs) with recurrent convolutional networks
to perform shape inpainting. Their model learns to fill in missing regions of 3D shapes, enhancing both the
realism and structural coherence of the output. These works have significantly advanced the field by enabling
more accurate and complete 3D reconstructions from partial data.

Despite this significant progress, a central challenge remains: balancing generalization and specializa-
tion. General-purpose models trained on diverse object categories with a single architecture often fail to
capture delicate, category-specific details. In contrast, specialized models trained for individual categories
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consistently demonstrate superior reconstruction accuracy, by focusing on the unique geometric and
structural properties of each object type. Recent studies confirm this trend: Authors in [21] proposed a
Category-Specific Mesh Reconstruction framework that learns deformable 3D mesh models from single
images, enabling accurate shape and texture recovery by capturing object-category priors without requiring
ground-truth 3D data. Extending this idea, Ref. [45] introduces a bird-specific reconstruction pipeline
that leverages bird-specific datasets and multi-view optimization to reconstruct intricate avian geometries,
demonstrating the effectiveness of specialization in handling complex biological shapes. These findings
establish that specialization offers a clear advantage over generalization when the goal is to capture delicate,
category-unique details. However, their main drawback lies in computational cost, requiring complex model
design and full training from scratch.

This trade-off has motivated the integration of transfer learning to enhance the model performance and
reduce training time. By leveraging knowledge from pre-trained models trained on large-scale datasets, TL
enables the adaptation of deep learning techniques to tasks with limited data.

Prior studies have shown its effectiveness on 3D reconstruction tasks by repurposing models originally
trained for related vision problems, such as facial mesh recovery and pose estimation. For instance,
architectures and models developed for large-pose facial 3D reconstruction have been successfully fine-tuned
to generalize across different object categories with minimal supervision, thus accelerating convergence and
enhancing reconstruction accuracy [46]. By adapting pre-trained weights through task-specific fine-tuning,
researchers can leverage prior knowledge to reduce reliance on large annotated 3D datasets, which are often
difficult and costly to acquire.

Our proposed approach builds directly on these insights, by refining pre-trained general-purpose
models with category-specific retraining instead of training from scratch. This strategy combines the
efficiency and scalability of general-purpose models with the precision of specialization, enabling detailed
3D reconstructions at a lower computational cost.

3 The Proposed Approach

The proposed approach leverages transfer learning, specifically fine-tuning, to enhance 3D recon-
struction from a single 2D image. In our previous work [47], we applied transfer learning by fine-tuning
an existing 3D reconstruction model (Pix2Vox) [48] on a new dataset, giving promising results. This
demonstrated the effectiveness of fine-tuning in improving reconstruction accuracy while reducing the need
for extensive training from scratch. Building on these findings, our current approach aims to further refine
this strategy by specializing the pre-trained model for specific classes of objects. By fine-tuning the model on
category-specific datasets, we generate multiple specialized versions, each optimized for a distinct category
of objects, thereby improving reconstruction precision and consistency. Around fine-tuning, we propose a
3D reconstruction pipeline comprising three key phases: (a) Image acquisition, (b) 3D Reconstruction, and
(c) Refinement. The image acquisition phase ensures high-quality input image, which is critical for accurate
reconstructions. The 3D reconstruction phase utilizes the adequate fine-tuned model to generate an initial
3D model, while the refinement phase further optimizes the reconstructed model to enhance its geometric
and visual quality. This structured pipeline, as illustrated in Fig. 1, aims to produce high-fidelity 3D models
with improved precision and robustness.
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Figure 1: The proposed 3D reconstruction pipeline

The image acquisition phase is critical for ensuring the suitability of the input image for 3D reconstruc-
tion, guided by predefined criteria such as image size, blur level, and lighting conditions to ensure optimal
outcomes. First, the image size is standardized to 600 pixels in height and width using a Python function
with the Python Imaging Library (PIL) [49]. This standardization ensures consistency and facilitates the
following processing steps. Additionally, to maintain image clarity and minimize blurriness, a Laplacian
operator from the Open-Source Computer Vision library (OpenCV) [50] is applied, quantifying the degree of
motion distortion in the input image by computing the Laplacian of the grayscale image. This allows accurate
measurement of the image’s blur level. Furthermore, lighting conditions are evaluated by calculating the
average pixel intensity. Images with moderate lighting levels are considered optimal for 3D reconstruction.
To achieve this, a Python script computes the average pixel intensity, ensuring that each image fulfills the
required lighting standards for optimal outcomes.

3.1 Image Acquisition

The image acquisition phase is critical for ensuring the suitability of the input image for 3D recon-
struction, guided by predefined criteria such as image size, blur level, and lighting conditions to ensure
optimal outcomes. This standardization ensures consistency and facilitates the following processing steps.
Additionally, to maintain image clarity and minimize blurriness, a Laplacian operator from the OpenCV is
applied, quantifying the degree of motion distortion in the input image by computing the Laplacian of the
grayscale image. This allows accurate measurement of the image’s blur level. Furthermore, lighting conditions
are evaluated by calculating the average pixel intensity. Images with moderate lighting levels are considered
optimal for 3D reconstruction. To achieve this, a Python script computes the average pixel intensity, ensuring
that each image fulfills the required lighting standards for optimal outcomes.

3.2 3D Reconstruction Phase

The 3D reconstruction phase involves two steps for transforming a validated image into a 3D model: (a)
object recognition and (b) 3D object reconstruction. First, the input image undergoes an object recognition
to identify the object class. Then, the image is processed by a specialized model, fine-tuned for that specific
class of objects, to generate the corresponding 3D model.
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3.2.1 Object Recognition

The initial step in the reconstruction phase involves identifying the object depicted in the input image.
This is accomplished through precise recognition using a pre-trained ResNet50 model, which has been
extensively trained on the ImageNet dataset [51]. Once the object class is identified, the image is forwarded
to the corresponding 3D reconstruction model.

3.2.2 3D Reconstruction

This step focuses on reconstructing a voxel-based 3D model of the object from the input image using
the corresponding class-specific model. Voxel-based representation is used to capture the 3D structure of
the object [51]. By dividing the 3D space into a regular grid of voxels, this representation effectively encodes
both surface and interior details, allowing for the creation of a more complete representation. Moreover,
the regular grid structure of voxels aligns well with the architecture of CNNs, enabling efficient parallel
processing across the entire voxel grid, which significantly enhances the model’s computational efficiency
and effectiveness.

As explained earlier, the 3D representation of the object from the input image is generated by the
corresponding model, fine-tuned specifically for this class of objects. To achieve this, we selected Pix2Vox
as the base model for our study and the Pascal3D [52] dataset for fine-tune. Further details on the Pix2Vox
model, Pascal3D dataset, and the fine-tuning process are provided in Section 4.

3.3 Refinement Phase

Following the generation of the 3D voxel representation, a refinement phase is applied to enhance the
quality of the 3D model. This phase involves converting the voxel-based representation into a triangular
mesh using the Marching Cubes algorithm [53], a well-established technique for surface reconstruction.

The Marching Cubes algorithm divides 3D space into small cubes and checks the values at the corners
of each cube to determine where the surface of an object passes through. By analyzing the configurations of
adjacent cubes using a set of predefined patterns, the algorithm generates a triangular mesh that approximates
the 3D object and ensures its smooth and continuous surface.

To further improve the quality of the mesh, the Laplacian Smoothing algorithm [54] is applied. This
technique iteratively adjusts the position of each vertex based on the average position of its neighboring
vertices, effectively smoothing the surface and reducing noise and artifacts. This result in a more visually
appealing and geometrically accurate 3D model.

Despite the potential variability in mesh quality and inconsistent topology [55], using voxels as an
intermediate stage ensures accurate conversion into a mesh representation, effectively resolving issues like
mesh noise, holes, and irregular vertex connectivity. Consequently, our approach merges the strengths of
both voxel and mesh representations, harnessing the effectiveness of CNNs while producing detailed and
accurate mesh representations of object surface geometry.

4 Evaluation and Validation

In this section, we present an experimental study conducted to evaluate and validate our proposed
approach for 3D reconstruction. We begin with an overview of the selected base model, Pix2Vox, and the
Pascal3D dataset used for fine-tuning. Next, we detail the fine-tuning process employed to adapt the model
to specific object categories and analyze the results obtained. Finally, we discuss the performance of our
approach, highlighting its strengths and advantages.
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4.1 Base Model Pix2Vox

Pix2Vox is a well-established model known for its simplicity and efficiency in generating 3D voxel
representations. It offers a robust framework for both single and multi-view 3D reconstruction. As illustrated
in Fig. 2, The Pix2Vox architecture consists of four key components: Encoder, Decoder, Context-Aware
Fusion, and Refiner.
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Figure 2: Pix2Vox architecture [52]

The encoder is based on a pre-trained VGGI16 network, utilizing its first nine convolutional layers,
trained on ImageNet, to extract essential image features. These features are further refined using three
additional 3D convolutional layers, producing a feature tensor that effectively represents the object from the
input image. The decoder transforms this feature tensor into a 3D voxel grid through a series of five 3D
transposed convolutional layers, progressively reconstructing the object in a coarse 3D form.

To enhance reconstruction quality, the context-aware fusion module integrates multi-view coarse voxel
representations. It assigns quality-based score maps to each volume and merges them using a weighted sum,
producing a more refined and coherent 3D model.

Finally, the refiner applies 3D convolutional layers to correct errors and enhance details in the
reconstructed volume, resulting in a more precise and good-quality final 3D representation.

4.2 Dataset and Preprocessing

To fine-tune the selected base model, we selected Pascal3D dataset. This dataset offers a comprehensive
and well-structured collection of 3D object models and corresponding 2D images, making it suitable for
training and evaluating our 3D reconstruction model. Pascal3D dataset extends the Pascal VOC dataset with
detailed 3D annotations for 12 object classes, including airplanes, bicycles, boats, bottles, buses, cars, chairs,
tables, motorcycles, sofas, trains and televisions. It features over 3000 objects per class, providing valuable
information about 3D shapes, poses and scales.

Pascal3D was selected due to its diverse collection of both synthetic and real images. By fine-tuning
and evaluating the model on synthetic images (generated with known ground truth) and real images
(captured across various real-world scenarios), we are able to evaluate the effectiveness and the generalization
capabilities of our approach.

Our case study focused on five object classes from two categories within Pascal3D: chairs and sofas
from the furniture category, and bicycles, motor-bikes, and aero-planes from the vehicle category. The
Pascal3D dataset stores 3D models, which is incompatible with our approach requiring “binvox” format
for 3D voxel data. To ensure compatibility with the Pix2Vox model, a preprocessing step was performed to
convert the “oft” files into 3D voxel grids. This transformation was carried out using the Binvox voxelization
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software [56], which rasterizes 3D model files in the “off “ format into binary 3D voxel grids, producing the
necessary “.binvox” files.

4.3 Evaluation Metrics

To evaluate the performance and accuracy of our approach, we used the IoU metric [57], which is
widely adopted for voxel-level evaluation in 3D reconstruction tasks. IoU quantifies the overlap between the
predicted voxel model and the ground truth, and is defined as the ratio of the volume of their intersection
to the volume of their union. Mathematically, it is expressed according to Eq. (1).

Vpred n Vgt

IoU = (1)

Vpred U Vgt

where V),.q and Vg, represent the predicted and ground truth voxel sets, respectively.

4.4 Model Fine Tunning

To adapt the Pix2Vox model to a specific object category, we retrained it on subsets of the Pascal3D
dataset. For each category, and based on empirical evaluations, we fine-tuned the model using an initial
learning rate of 0.001 and a batch size of 32, training for 240 epochs. By optimizing these hyperparameters, we
achieved a balance between convergence, training stability, and computational efficiency. Table 1 summarizes
the optimal hyperparameters used during the Pix2Vox fine-tuning process.

Table 1: Best hyperparameters for each category

Category
Initial Global Chair Sofa  Aeroplane Bicycle Motor cycle
Number of epochs 320 240 320
Hyper parameters Learning rate 0.001
Batch size 64 32 16

5 Results and Discussion

This section presents the results obtained from retraining the Pix2Vox model using the Pascal3D dataset,
with the goal of evaluating the effectiveness of our category-specific fine-tuning approach. The evalua-
tion includes both quantitative analyses using the IoU metric and qualitative comparison through visual
inspection of the reconstructed 3D models. In the quantitative evaluation, we compare the performance of
three model types: the original Pix2Vox model, the Pix2Vox model fine-tuned using the entire Pascal3D
dataset, and multiple versions of Pix2Vox model fine-tuned on subsets of Pascal3D dataset corresponding to
individual object categories. Importantly, although Pix2Vox was fine-tuned using the entire Pascal3D dataset
for the general model and category-specific subsets for the specialized versions, all models, including the
original Pix2Vox, were evaluated on the same test data, ensuring a fair comparison and directly highlighting
the advantage of specialization over generalization. For the qualitative evaluation, we compare 3D models
generated by five configurations: the original Pix2Vox model, the general model, category-specific models
before and after refinement, and the Mesh R-CNN model as an external baseline. This comparison highlights
the impact of category-specific fine-tuning and the refinement phase in enhancing the quality, accuracy, and
visual detail of the reconstructed 3D models.
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5.1 IoU Based Evaluation and Models Comparison

Table 1 presents the IoU scores obtained from evaluating the original Pix2Vox model, a general model,
and multiple category-specific models of five object categories from the Pascal3D dataset: Chair, Sofa,
Airplane, Bicycle, and Motorbike.

The original Pix2Vox model achieved an overall IoU of 0.661, with per-category performances rang-
ing from 0.531 (Bicycle) to 0.709 (Sofa), indicating a solid baseline but with noticeable variation across
object types.

The general fine-tuned model, trained on the whole Pascal3D dataset without category specialization,
improved the overall IoU to 0.706, representing a moderate performance gain of 0.045 over the original
model. This result suggests that fine-tuning on a broader dataset enhances general reconstruction ability,
though not uniformly across all object classes. In contrast, the category-specific models demonstrated
significantly higher IoU scores in their respective categories:

o The Chair model achieved an improvement of approximately 12.7% over the original model.
o The Sofa model showed an improvement of about 11.4%.

o The Airplane model exhibited a substantial increase of approximately 39.8%.

» The Bicycle model improved by around 45.4%.

+ The Motorbike model also achieved an improvement of approximately 61.2%.

These results highlight the effectiveness of category-specific fine-tuning, which consistently outper-
formed both the original Pix2Vox model and the general fine-tuned model. The improvements were
particularly significant in the Airplane and Motorbike categories, each achieving an IoU greater than 0.9,
corresponding to a significant increase over the original model.

The variation in performance across category-specific models can be attributed to two main factors:
First, the number of training examples available for each object category and the quality of the images in the
dataset. Categories with more abundant and higher-quality training data tend to yield better reconstruction
results after fine-tuning. Second, the intrinsic complexity of object geometry also affects reconstruction
accuracy. For instance, objects with relatively simple and regular shapes, such as airplanes, are easier for the
model to learn and reconstruct, which explains the high IoU scores achieved in this category. In contrast,
objects with more complex and irregular structures, such as chairs, present greater challenges, leading to
lower reconstruction accuracy.

In summary, while general fine-tuning improves overall model performance, specializing the model for
individual object categories yields the most significant accuracy gains, validating the core premise of our
approach (Table 2).

Table 2: Summary of the performance metrics

Model Chair Sofa Airplane Bicycle Motorbike Overall
Original Pix2Vox  0.567  0.709 0.648 0.531 0.562 0.661
Chair model 0.639 N/A N/A N/A N/A N/A
Sofa model N/A  0.790 N/A N/A N/A N/A
Airplane model = N/A  N/A 0.906 N/A N/A N/A
Bicycle model N/A  N/A N/A 0.772 N/A N/A
Motorbike model N/A  N/A N/A N/A 0.907 N/A

General model N/A N/A N/A N/A N/A 0.706
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Beyond IoU scores, category-specific retraining enables the model to learn and preserve distinctive
geometric features more effectively, resulting in more precise and reliable reconstructions. For example,
in the Airplane category, our approach reconstructed delicate structures like wings and tails with much
better precision, whereas the general model frequently produced blurred or misaligned shapes. Similarly, in
the Motorbike category, our approach successfully preserved the circular geometry of the wheels and the
alignment of the frame, details that were often lost in the baseline model.

Scalability is another advantage of our approach. New categories can be incorporated by fine-tuning the
existing base model instead of training a new model from scratch, which substantially reduces both training
time and computational resources. This demonstrates both the efficiency and practicality of our approach
for real-world applications, where systems often need to handle a wide variety of object categories quickly
and with limited computational resources.

Despite the overall improvements, some limitations remain. For example, in the Chair category, the
model occasionally generates a chair that differs from the input image in structure or style. This indicates
that, although the model captures general geometric features of chairs, it can struggle to reproduce unique or
complex designs accurately. One contributing factor is that, in the dataset, some images of different objects
are associated with the same ground truth 3D object, which can confuse the model during training.

5.2 Visual Evaluation & Comparison

This section presents a qualitative analysis of 3D reconstruction results obtained through our proposed
fine-tuning approach. The analysis includes visual comparisons of reconstructed 3D models generated from
single-view images sourced from the ObjectNet3D datasets.

To evaluate our approach, we compared the results of our category-specific models with the 3D models
generated by baseline models, specifically using publicly available checkpoints for the original Pix2Vox model
and Mesh R-CNN. As shown in Fig. 3, the visual results clearly illustrate the superior performance of our
category-specific models, fine-tuned individually for each object category. These specialized models capture
geometric features more accurately compared to the baseline models, including Pix2Vox, Mesh R-CNN, and
the general model fine-tuned on the entire dataset.

Additionally, Fig. 4 presents real-world examples, comparing 3D reconstructions from the general
model and the proposed approach using real world images sourced from the internet. The general model
tends to produce noticeable errors and inaccuracies, whereas our approach demonstrates significantly
improved geometric accuracy and visual consistency. This comparison further underscores the practical
effectiveness and robustness of our proposed fine-tuning approach.

Overall, this visual comparison validates the advantages of our category-specific fine-tuning and
subsequent refinement, confirming the substantial improvements in detail, accuracy, and realism achieved
by our proposed method.
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Figure 3: Results of our proposed approach using different images from specific categories. (a) Input image, (b) GT,
(c) Initial Pix2Vox model, (d) Mesh R-CNN model, (e) General Model, (f) Proposed Approach before Refinement, (g)
Proposed Approach after Refinement
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Figure 4: Results of real-world images from the Internet. (a) Input image, (b) General Model, (c) Category-specific
Models after Refinement

5.3 Advantageous of Refinement Step

The refinement phase is critical for enhancing the visual quality and accuracy of the reconstructed 3D
models. This step significantly reduces noise, corrects surface imperfections, and emphasizes fine-grained
geometric details, resulting in noticeably improved realism. In addition to the improvements achieved
through category-specific fine-tuning, the refinement phase further enhances the quality of the generated
models compared to baseline methods such as the original Pix2Vox and Mesh R-CNN. The effectiveness
of this step is clearly illustrated in Fig. 5, which provides a direct comparison of a reconstructed chair
model before and after refinement. Additionally, as previously shown in Figs. 3 and 4, the refinement phase
consistently contributes to higher fidelity and precision across various object categories, highlighting its
essential role within our proposed pipeline.
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Figure 5: Impact of the refinement phase on the quality of the 3D model

6 Conclusion

In this paper, we introduced a deep retraining approach for category-specific 3D reconstruction from
a single 2D image, using transfer learning to improve model accuracy, completeness, and visual quality. The
proposed approach integrates three key phases: image acquisition, where input quality is ensured through
standardized resolution, blur detection, and lighting checks; 3D reconstruction, where a pre-trained model
is individually fine-tuned on specific categories of objects to generate voxel-based representations; and
refinement, which converts voxels into smooth and detailed triangular meshes using marching cubes and
Laplacian smoothing algorithms.

The experimental study, conducted using the Pix2Vox model and the Pascal3D dataset, demonstrated
that category-specific fine-tuning significantly improves reconstruction accuracy over general or baseline
models. The proposed approach achieved higher IoU scores across all tested object categories, particularly
in complex shapes. Visual comparisons further validated the effectiveness of our approach, showing that the
combination of high-quality input image, tailored fine-tuning and mesh refinement produces more realistic
and geometrically accurate 3D models, both for synthetic and real-world images.

Our results emphasize the advantage of using transfer learning and category-specific retraining. Transfer
learning accelerates model training and reduces the dependence on large datasets, while specialized models
increase reconstruction fidelity by capturing object-specific features. Additionally, the structured pipeline,
beginning with image acquisition and concluding with mesh refinement, ensures that each step contributes
to improving the model quality, addressing challenges like noise, incomplete geometry, and low resolution.

This study serves as a proof of concept, as experiments were limited to a subset of categories and
benchmark data. Building on this foundation, future work will explore a wider range of objects, including
deformable and articulated objects, and extend the framework beyond single-image reconstruction to
multi-view or video-based inputs for greater completeness.

Evaluation will also be strengthened by incorporating surface-based metrics, alongside with perceptual
quality measures. To better understand the contribution of each component, ablation studies will be
conducted to isolate the impact of each step in the proposed pipeline. Furthermore, validation on larger
datasets, as well as under real-world conditions involving noise, occlusion, and lighting variation, will provide
a more rigorous assessment of robustness.

Looking further ahead, we envision extending the pipeline into a hybrid framework that combines
DL with classical geometry-based methods, leveraging the strengths of both paradigms. Beyond industrial
scenarios such as AR/VR, robotics, and manufacturing, this work was also motivated by potential appli-
cations in medical imaging, particularly in the dental field. In such contexts, category-specific retraining
could be highly valuable: for example, fine-tuning the model on a specific type of tooth (e.g., molars or
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incisors) may enable sharper and more clinically precise reconstructions than generalized models. While
this study was limited to benchmark datasets (furniture, vehicles) as a proof of concept due to the lack of
publicly available dental data, future work will focus on extending the pipeline to medical scenarios where
high-fidelity reconstructions are of critical importance.
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