
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2026.075980

ARTICLE

A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics
Modeling with Reduced Graphics Memory

Zuokun Yang1, Jun Li1,2,*, Xin Lai1,2 and Lisheng Liu1,2,*

1Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology,
Wuhan, 430070, China
2Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
*Corresponding Authors: Jun Li. Email: jun_li@whut.edu.cn; Lisheng Liu. Email: liulish@whut.edu.cn
Received: 12 November 2025; Accepted: 31 December 2025; Published: 29 January 2026

ABSTRACT: Peridynamics (PD) demonstrates unique advantages in addressing fracture problems, however, its
nonlocality and meshfree discretization result in high computational and storage costs. Moreover, in its engineering
applications, the computational scale of classical GPU parallel schemes is often limited by the finite graphics memory
of GPU devices. In the present study, we develop an efficient particle information management strategy based on the
cell-linked list method and on this basis propose a subdomain-based GPU parallel scheme, which exhibits outstanding
acceleration performance in specific compute kernels while significantly reducing graphics memory usage. Compared
to the classical parallel scheme, the cell-linked list method facilitates efficient management of particle information
within subdomains, enabling the proposed parallel scheme to effectively reduce graphics memory usage by optimizing
the size and number of subdomains while significantly improving the speed of neighbor search. As demonstrated in PD
examples, the proposed parallel scheme enhances the neighbor search efficiency dramatically and achieves a significant
speedup relative to serial programs. For instance, without considering the time of data transmission, the proposed
scheme achieves a remarkable speedup of nearly 1076.8× in one test case, due to its excellent computational efficiency
in the neighbor search. Additionally, for 2D and 3D PD models with tens of millions of particles, the graphics memory
usage can be reduced up to 83.6% and 85.9%, respectively. Therefore, this subdomain-based GPU parallel scheme
effectively avoids graphics memory shortages while significantly improving the computational efficiency, providing new
insights into studying more complex large-scale problems.

KEYWORDS: Peridynamics; GPU; CUDA; parallel computing; cell-linked list

1 Introduction
The damage, fracture, and failure problems are commonly observed in aerospace, civil, mechanical, and

other engineering fields. However, it is challenging to accurately simulate and analyze these complicated
phenomena using numerical methods. Classical mesh-based methods, such as the finite difference method
(FDM), finite volume method (FVM), and finite element method (FEM), have tried to address these
issues [1–3].

However, these approaches based on classical continuum mechanics, are discretization approaches
employed to discretize classical partial differential equation (PDEs), which are not applicable to fracture
problems. To overcome these limitations, Silling et al. [4–6] proposed a nonlocal Peridynamics (PD)
theory, which is also a continuum mechanics theory but one that can be discretized with meshfree point
collocation or finite elements. In contrast to classical continuum mechanics approaches, PD reformulates

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
https://doi.org/10.32604/cmes.2026.075980
https://www.techscience.com/doi/10.32604/cmes.2026.075980
mailto:jun_li@whut.edu.cn
mailto:liulish@whut.edu.cn

2 Comput Model Eng Sci. 2026;146(1):7

classical partial differential equations into integrodifferential equations, which allow damage to originate
in multiple locations within the material and propagate along arbitrary paths without the need for special
crack propagation criteria. Therefore, PD provides a coherent theoretical framework for dealing with fracture
problems. Until now, PD theory has been demonstrated broad applicability and significant engineering
values in a variety of fields, including fracture analysis of brittle materials such as ceramics [7] and glass [8],
interlaminar delamination predictions of composite materials [9], crack propagation assessment in concrete
structures [10], and prediction of crack evolution during hydraulic fracturing of shale [11].

The meshfree point collocation method is one of the commonly used approaches for discretizing the
governing equations of PD theory [12]. Similar to many meshfree methods, the neighbor search and neighbor
list maintenance are rather expensive in PD, which are not necessary in classical mesh-based methods due
to their mesh connectivity [13]. Therefore, PD requires higher computational and storage resources than
classical mesh-based methods, posing significant challenges for solving large-scale problems [14].

To extend the application of PD theory, it is critical to improve their computational efficiency and reduce
the memory usage [15,16]. One effective approach is to enhance the efficiency of the PD theory itself, such
as using a uniform grid-based approach to optimize neighbor retrieval and link-list pairing [17]. Another
strategy involves combining local theories with global theories to minimize computations in non-core
regions [18]. Moreover, Mao et al. [19] proposed a mixed-precision GPU computation for Smoothed Particle
Hydrodynamics (SPH) method, where low-precision was applied to accuracy-insensitive components to
reduce computation time. And, Xu et al. [20] explored machine learning scheme to reduce computational
complexity, but their acceleration effect remains highly limited. Particularly, due to the independence
of particle calculations, parallel computing is beneficial for the acceleration of meshfree discretization
methods [21]. In 2012, the open-source project Peridigm was parallelized using CPU-based Message Passing
Interface (MPI) and released as the first software package specifically developed for PD [22]. In addition,
Fan and Li [23] attempted to accelerate PD computations using OpenMP. However, similar to the MPI-
based approach, this CPU-parallel scheme still requires each processor to handle a large number of particles,
limiting the effect of maximum parallelism. As a result, the improvement in acceleration efficiency is
restricted to only an order of magnitude.

Recently, the development of GPUs offers a promising pathway for parallel implementation. Unlike
CPUs, which provide 10 to 1000 independent active threads, GPUs can support over 100,000 active threads
simultaneously [24]. Thus, GPU-based parallel programs have been developed for mesh-free discretization
methods to achieve significantly higher efficiency. Boys et al. [25] proposed the PeriPy, a lightweight and
high-performance Python package for solving PD problems on a CPU/GPU platform in solid mechanics.
Its GPU solving efficiency is 3.7 to 7.3 times faster compared to existing OpenMP solvers. In addition,
Crespo et al. [26] employed CUDA to accelerate DualSPHysics, generating an improvement of two orders of
magnitude over its serial counterpart which provided a valuable reference for the parallelization of numerical
simulation programs based on meshfree discretization methods. Moreover, Zheng et al. [14] developed a
parallel PD program with finite element discretization for large deformation problems in thin-shell structures
and achieved significant accelerations, further expanding the applicability of GPU parallel schemes in PD
theory. Recently, Wang et al. [27] classified data types and designed a more efficient parallel scheme by
optimizing graphics memory usage, resulting in an impressive 620.3× speedup. Noteworthy, although the
GPU parallel schemes demonstrate significant efficiency improvements over serial programs, the computa-
tional size remains constrained by the limited memory capacity of GPUs. Bartlett and Storti [28] proposed
a memory optimization method utilizing regular grids, reducing memory consumption by approximately
50%. Wang et al. [29] suggested a multi-GPU distributed parallel scheme, which exhibits great potential

Comput Model Eng Sci. 2026;146(1):7 3

for large-scale simulations but requires additional hardware resources. Therefore, how to effectively use the
limited graphics memory to perform larger-scale simulations remains a challenge.

Intriguingly, CUDA enables the packaging of GPU code into discrete functions (kernel functions) with
data transferring between the host and device explicitly managed by the programmer [30,31]. This provides
an opportunity to address the limitations of graphics memory on computational scale through optimizing
data transfer strategies. Among various meshfree methods [32–34], the cell-linked list approach mainly
divides the computational domain into small grid cells and then restricts neighbor searches to adjacent
cells, which avoids the unnecessary traversal of unrelated particle pairs, thereby significantly improving
the neighbor search efficiency. Moreover, the cell-linked list approach can also provide an efficient scheme
for managing particle information within subdomains [35]. In the present study, we mainly employed the
efficient particle management of the cell-linked list approach to partition the computational domain based
on device capabilities and establish an effective data transfer strategy, enabling batch-wise computation on
the GPU.

Consequently, in the present study, we proposed a GPU parallel scheme with subdomain computing.
This scheme divided the computational model into multiple subdomains, recorded particles in each subdo-
main using a cell-linked list method, and then transferred particle information for only one subdomain at
a time. By controlling the size and number of subdomains, this approach effectively avoids the constraints
caused by limited graphics memory on computational scales. As implemented in PD models, the results
demonstrate that the subdomain-based GPU parallel scheme exhibits outstanding acceleration performance
while significantly reducing GPU memory usage. Particularly, unlike other methods that sacrifice com-
putational accuracy to reduce memory consumption [28], this approach does not result in any loss of
accuracy. Therefore, this study proposes an effective scheme for reducing graphics memory usage while
maintaining acceleration performance in large-scale PD simulations. Noteworthy, as PD is discretized with
the meshfree point collocation method, this scheme may provide significant insights into the acceleration of
the meshfree method.

2 The Theory and Implementation of Subdomain-Based GPU Parallel Scheme
PD method exhibits significant advantages and excellent performance in crack simulation by intro-

ducing a non-local interaction range. Particularly, the bond-based PD (BB-PD) modeling exhibits better
numerical stability compared to state-based PD. In addition, BB-PD models are easy to be implement,
which can effectively demonstrate the computational efficiency of this parallel scheme. Therefore, in the
present study, the subdomain-based GPU parallel scheme was introduced into two-dimensional (2D) and
three-dimensional (3D) BB-PD calculations. The computational efficiency and graphics memory were then
examined and compared with classical parallel schemes and serial programs without domain division. In
the following, we will introduce the implementation of the subdomain-based GPU parallel scheme on
BB-PD models.

2.1 Bond-Based Peridynamics Theory
In BB-PD theory, the model can be discretized into a number of material points. As shown in Fig. 1,

a material point x located in a continuous domain has neighboring points in a domain Hx (horizon) with
radius δ. ξ and η denote the relative positions and displacements of the material point x, respectively, and
their expressions can be given as,

ξ = x′ − x (1)
η = u (x′, t) − u (x , t) (2)

4 Comput Model Eng Sci. 2026;146(1):7

Figure 1: Schematic diagram of BB-PD theory

The force density vector arises from the bond connecting a pair of points in the deformed configuration.
In BB-PD theory, the magnitudes of the force density are equal and parallel to the relative position vector
ξ + η in the deformed configuration. Its expression is given as,

t(η, ξ) = 1
2

cs η + ξ
∥η + ξ∥ = −t′ (η′, ξ′) (3)

where, s represents the relative stretch of the bond and c represents the bond constant, which are defined by
the following formula.

s = ∥η + ξ∥−∥ξ∥
∥ξ∥ (4)

c = {12k1/πhδ3 D = 2
18k2/πδ4 D = 3 (5)

in which k1 and k2 are the 2D and 3D bulk modulus, respectively, and h is the thickness of the 2D model.
At any moment t, the motion equation of the material point x can be expressed as:

ρ (x) ü (x , t) = ∫
Hx
[t (η, ξ) − t′ (η′, ξ′)]dVx′ + b (x , t) (6)

where, ρ(x) represents the mass density of material point x, and ü(x , t) represents the acceleration vector
field of material point x. Vx′ denotes the volume of the region where the material point x is located, and b(x,
t) is the body force density acting at point x. As the size of the horizon decreases to zero, PD theory converges
with Continuum Mechanics [36].

Comput Model Eng Sci. 2026;146(1):7 5

The damage of the particle x is controlled by a damage function, as shown in Eqs. (7) and (8).

φ(x , t) = 1 − ∫Hx
μ (x , t)dVx

∫Hx
dVx

(7)

μ = {1, s < s0
0, s > s0

(8)

where, μ is a scalar function that depends on time t, with an initial value of 1. When the relative stretch
s reaches the critical value s0, μ changes to 0, indicating that the bond between the two material points
is completely fractured. In addition, for isotropic materials, since there is only one independent material
constant c, BB-PD theory restricts the material’s Poisson’s ratio to specific values (1/3 for 2D problems and
1/4 for 3D problems).

2.2 Numerical Solution Procedure
A classical computational model for PD simulations, i.e., meshfree point collocation, was used here for

the discretization. Therefore, the integrated formula in Eq. (6) can be expressed as,

ρ
. .
u (x , t) = ∑

x′∈Hx

(t − t′)Vx′ + b (x , t) (9)

To evaluate the efficiency of the proposed parallel scheme, we examined both quasi-static and transient
2D and 3D PD problems utilizing different integration methods. For transient problems, a central-difference
explicit integration method (CDEI) was employed; while for quasi-static problems, an adaptive dynamic
relaxation method (ADR) was used [37].

In CDEI, the relationship between the acceleration, velocity u̇, and displacement u of particle x is
given by

u̇n = un+1 − un−1

2Δt
(10)

ün = un+1 − 2un + un−1

Δt2 (11)

where, the subscript n denotes the nth iteration.
In ADR, the PD equations of motion for all particles in the system can quickly converge to a steady state

through introducing virtual inertia and damping terms. Then combined with CDEI, the displacement u and
velocity u̇ at the next time step can be obtained as

u̇n+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2 − CnΔt) u̇n−1/2 + 2ΔtD−1F n

(2 + Cn Δt) , n > 0

ΔtD−1F n

2
, n = 0

(12)

un+1 = un + Δtu̇n+1/2 (13)

Here, D is the fictitious diagonal density matrix, whose diagonal elements can be selected based
on Greschgorin’s theorem [12]. C is the damping coefficient, and F is the force vector composed of PD
interactions and body forces.

6 Comput Model Eng Sci. 2026;146(1):7

2.3 The Cell-Linked List Method
The cell-linked list method is a spatial decomposition algorithm commonly used in meshfree meth-

ods [35]. Particularly, this method decomposes the whole model into a number of domains (cells) and records
the particles within the cells in numbered order with the form of a linked list. In the present study, we
employed this cell-linked list method to divide the computational domain, although the classical cell-linked
list method has unique requirements on the size of the cell in optimizing neighbor search [32]. Therefore, each
cell can be divided arbitrarily according to the user’s needs with the requirement that the size of the cell size
should be larger than the particles’ interaction range. In addition, in order to fully employ the computational
power of the GPU, each cell was kept at the same size as much as possible.

To record the particle number of each cell, as shown in Fig. 2, we created two arrays. Each element of
the “head array” corresponds to a cell, records the largest particle number in the cell, and that element is
used to address the “list array”, which records the next particle number in the cell. Following the index of the
list, we then reached the last particle in the cell, i.e., the smallest particle, whose corresponding element was
−1. This indicates that the index was terminated here. Consequently, the particles in each cell can be labeled
according to the order of particle numbers from the largest to the smallest, which facilitates the extraction
of the particle elements in the same cell in the original array and saving them in the order of the cell.

Figure 2: Method of cell-linked list

2.4 Data Structure
The main advantage of this proposed parallel scheme is its ability to effectively reduce the program’s GPU

memory usage by dividing the computational domain, when the memory required for the simulation exceeds
the hardware’s capacity. Therefore, it is more efficient to employ the size of each computational subdomain
corresponding to the memory limit that the computer can provide. The size of the subdomain in the parallel
scheme can be determined using the following method.

First, as shown in Fig. 3, the model was divided into several cells, and each cell was extended outward by
a distance δ (the horizon) to form a boundary region. Cell A and boundary A constitute subdomain A. All
cells are non-overlapping and fully cover the entire structure. The presence of the boundary regions ensures
that the neighbor information of particles within each cell is complete, thereby guaranteeing computational
accuracy. As shown in Eqs. (14) and (15), the number of subdomains (cell_Num) and the maximum number

Comput Model Eng Sci. 2026;146(1):7 7

of particles in each subdomain (cell_maxNum) were closely related to the GPU configuration, especially the
size of the GPU memory.

cel l_maxNum = a GPU Memor y
∑Variabl e size

0 < a < 1 (14)

cel l_Num ≥ Total Number
box_maxNum

(15)

where,∑Variabl e size denotes the sum of the size of each variable type, i.e., the graphics memory required
to store all the information of one particle. To avoid additional graphics memory consumption due to
memory alignment and other factors, a correction coefficient a was defined to represent a portion of the
graphics memory. Therefore, the actual employed memory size was given by: a ×GPU Memory. The variable
Total Number indicates the total number of particles in the model and variable box_maxNum indicates the
maximum number of particles that can be accommodated in a single computational domain.

Figure 3: Domain partitioning based on cell-linked list

Based on the cell-linked list method described in Section 2.3, the particles within a subdomain were
labeled in descending order of their original indices. Moreover, this study uses an explicit solution method to
update particle motion, and the computation at the current time step only relies on the particle information
from the previous time step. As shown in Fig. 3, before the computation at the current time step (time step
k+ 1), the particle information from the previous time step (time step k) is transferred to the new array (array
“Old” to “New”) in the order of “Cell A, boundary A, Cell B, boundary B. . .”. The corresponding pseudo-
code is outlined in Algorithms 1 and 2, as shown in Table 1. During computation, as shown in Fig. 4, the
data are sequentially transferred to the device according to the subdomain order to perform calculations for
the corresponding cells. Meanwhile, particle information of the boundary region remains read-only, thus
consistently retaining data from the previous time step. Since only particles within the cells are updated, this
effectively avoids redundant calculations on particles of the boundary region.

After completing all computations for all subdomains, the method provided by Algorithm 2 (swap of the
positions of arrays “New” and “Old”) may be employed to transfer the particle information corresponding

8 Comput Model Eng Sci. 2026;146(1):7

to cells in array “New” to “Old”. This facilitates the output of results for the current time step. Mean-
while, the particle information stored in array “Old” has been updated. Therefore, combined the updated
particle information in array “Old” with the boundary region particle copying procedure in Algorithm 2,
the particle information in the boundary regions of array “New” can be updated. This process ensures that
all particle information in array “New” is updated to the current time step, thereby maintaining consistency
of particle data across subdomains.

Table 1: Pseudo-code for constructing subdomains

Algorithm 1 Recording the cell to which the particle

belongs

Algorithm 2 Transferring particles to a new array based

on the order of subdomains

1. int* head[cell_Num] = {−1};

2. int* list[Total Number] = {−1};

3. int* boundary[cell_Num * boun_num];

4. int* loop [2 * cell_Num] = {0};

5. for (i = 0; i < Total Number; i++)

6. for (j = 0; j < cell Num; j++)

7. int ix = j % cell_x, iy = j/cell_x;

8. if ((ix * cell_size − δ) < posion_x[i] < ((ix

+ 1) * cell_size + δ) && (iy * cell_size −

δ) < posion_y[i] < ((iy + 1) * cell_size +

δ))

9. if ((ix * cell_size) < posion_x[i] < ((ix

+ 1) * cell_size) && (iy * cell_size)

< posion_y[i] < ((iy + 1) *

cell_size))

10. list[i] = head[j];

11. head[j] = i;

12. loop[j]++;

13. else

14. boundary[j * boun_num + loop[j

+ cell_Num]] = i;

15. loop[j + cell_Num]++;

16. else

17. break;

1. for (i = 0; i < cell Num; i++)

2. int num = 1, index = head[i];

3. //Copy the cell region

4. New[i * cell_maxNum] = Old[index];

5. while (list[index] != −1)

6. New[i* cell_maxNum + num] =

Old[list[index]];

7. num++;

8. index = list[index];

9. //Copy the boundary region

10. for (j = 0; j < loop[i + cell_Num]; j++)

11. New[i * cell_maxNum + num] =

Old[boundary[i * boun_num + j]];

where, “posion_x/y” are the coordinates of the -x, -y direction of the particle x, respectively, “cell_size” is the edge

length of the cell, “cell_x” is the number of cells in the -x direction. “boundary” is used to record the boundary

particles of each cell, and “boun_num” is the maximum number of boundary particles. “loop” is used to record the

number of particles in each aero (cell and boundary).

Comput Model Eng Sci. 2026;146(1):7 9

Figure 4: Schematic diagram of data transfer

In addition, based on data size and variable types, the data in the PD model can be divided into two
categories: model parameters and particle-related data. Next, we will introduce how to manage these data. For
model parameters, such as geometric and material parameters, they remain constant during the simulation
and are accessed by all threads. When all threads in a warp read data from the same address, the broadcast
mechanism and caching effects allow registers and constant memory to have faster access speeds than global
memory, in which register access is particularly notable, although its capacity is the smallest. Therefore, few
model parameters can be directly defined in registers. Otherwise, they can be stored in constant memory.
However, constant memory variables cannot be changed by the kernel functions (device-side functions in
GPU computing), thus these variables are required to be initialized on the host and then transferred to
the device.

For particle-related data, such as spatial coordinates, displacements, velocities, and accelerations, these
data occupy a significant amount of memory and are typically stored only in global memory. When the model
is relatively large, global memory may not be able to store all particle information at once. In this case, we
adopted the above method to rearrange the particle information on the host, and then stored it sequentially
in a new array by subdomain. During calculations, these data were transmitted to the device in batches by
subdomain, with each computation completed on the GPU for only one specific subdomain at a time.

2.5 Parallel Approach
Generally, one of the most commonly used GPU parallel schemes for PD simulations is particle

mapping, which maps all calculations for each particle to the corresponding thread [25]. Due to the limited
resources of Streaming Multiprocessors (SM), if too many thread blocks are launched, exceeding the resource
capabilities of the SM, some thread blocks may not be able to execute immediately and must wait for previous
blocks to be completed. This is a common “resource scheduling issue”, which often leads to underutilization
of GPU resources and consequently affects the efficiency of parallel computations. Additionally, for extremely
large datasets, a single grid may not be able to generate enough threads to handle all the data. To avoid the
above issues, we established the relationship between particles and threads using a grid stride loop, as shown
in Fig. 5. Here, threadIdx.x is the thread index within the thread block; blockIdx.x is the thread block index;
blockDim.x is the number of threads in each dimension of the thread block; and gridDim.x is the number of
thread blocks in each dimension of the grid.

In summary, the implementation of the subdomain-based GPU parallelism scheme for the BB-PD
model is shown in Fig. 6. Noteworthy, in the present study, we mainly focus on linear elasticity and small
deformation problems. Therefore, as shown in Fig. 6, the neighbor list was only constructed once at the

10 Comput Model Eng Sci. 2026;146(1):7

beginning and not updated thereafter during the simulation [12]. However, this simplification is no longer
appropriate for large deformation problems, where the neighbor list must be updated frequently to ensure
the accuracy of the simulation.

Figure 5: Schematic diagram of particle-mapping

Figure 6: Implementation of subdomain-based GPU parallel scheme for BB-PD model

Comput Model Eng Sci. 2026;146(1):7 11

2.6 Algorithm Analysis
To further clarify the rationale behind the proposed subdomain-based GPU parallel scheme, this

subsection provides a theoretical analysis of its core idea, i.e., the overall benefits introduced by subdo-
main decomposition.

During the neighbor search, each particle must be computed with all other particles to determine
its neighbors, resulting in a spatial complexity of n(n − 1)/2. This approach is commonly known as the
brute-force search method. To reduce the computational complexity of neighbor search, we employed the
cell-linked list method in the present study. Here, when the model was evenly divided into m subdomains,
each particle was only required to be calculated with the other particles within its own subdomain, leading
to a spatial complexity of n(n − m)/2m. As a result, the domain division scheme can achieve a speedup of
approximately m times for this step.

While the domain division does not reduce the complexity of the time integration. For example, in the
bond force calculations, we only compute the bond forces between a particle and other k particles within its
horizon, leading to a spatial complexity of kn. Therefore, the proposed subdomain-based parallel scheme is
mainly for large-scale calculations.

On the one hand, in classical parallel schemes, the maximum computational scale is constrained by
graphics memory capacity, whereas subdomain decomposition can overcome this limitation by reducing
the number of particles within each computational domain, thereby enabling larger-scale simulations. On
the other hand, computational efficiency in classical parallel schemes is limited by the maximum number
of active threads. Large-scale tasks that exceed hardware limits must be queued for execution, which not
only fails to enhance parallelism but also introduces additional scheduling and management overhead,
thereby impeding performance gains. In contrast, in the subdomain-based GPU parallel scheme, adjusting
the subdomain size can effectively reduce the workload per computation, allowing hardware resources to be
fully utilized and thereby improving computational efficiency.

3 Numerical Examples
In this section, using BB-PD examples, we will first demonstrate the accuracy of the BB-PD simulations,

and then examine the computational efficiency of the proposed GPU parallelization scheme by comparing
it with the classical parallelization scheme and a serial program. In addition, two large-scale 2D and 3D PD
models with tens of millions of particles will be used to demonstrate the applicability of this scheme for
large-scale computations and its advantages in graphics memory usage.

The hardware environment used for these examples is listed as follows: CPU: Intel(R) Xeon(R) Gold
6248R @ 3.00 GHz; GPU: NVIDIA A100 80 GB. The serial program was written in C and run on the host
side, while the parallel program was written in CUDA C (version 12.6). In the present study, the classical
scheme represents the parallel scheme that employs the same programming logic, variable types, storage
method, and mapping strategy as the subdomain-based GPU parallel scheme, but without subdomain
partitioning. Therefore, the only difference between classical scheme and proposed subdomain-based GPU
parallel scheme is whether the subdomain partitioning is performed. Additionally, readers may refer to
the code provided in Table S1 of the Supplementary Materials to generate the neighbor list. Some relevant
codes have been uploaded to the open source, Github, and the address is https://github.com/Yang-Z-K/
A-subdomain-based-GPU-parallel-scheme-for-accelerating-Perdynamics-modeling.git.

https://github.com/Yang-Z-K/A-subdomain-based-GPU-parallel-scheme-for-accelerating-Perdynamics-modeling.git

12 Comput Model Eng Sci. 2026;146(1):7

3.1 A 2D Plate
As shown in Fig. 7, a rectangular plate was subjected to a uniform tensile loading of 200 MPa without

any displacement constraints. The materials properties of this model are isotropic. The tensile loading was
applied as a body force density on the surface layers (Rl) with a thickness of Δ (particle spacing) at the left
and right edges of the structure. Table 2 lists the main model parameters. The particle spacing Δ was set to
be 5 mm, resulting in a total of 20,000 particles. The horizon radius δ was chosen as 3.015Δ [5]. The time step
Δt is 1.0 s, and the total number of time steps is 4000.

Figure 7: Geometry of a 2D plate

Table 2: The model parameters for example 1

Model L (mm) W (mm) E (GPa) v ρ (kg/m3)
1 1000 500 200 1/3 7850

To verify the accuracy of the proposed parallel scheme, the above model was divided into four
subdomains, as shown in Fig. 7. The steady-state solutions of ux(x, y = 0) and uy(x = 0, y) were compared
with the analytical solutions, as shown in Fig. 8.

ux = (x , y = 0) = p
E

x (16)

uy = (x = 0, y) = v p
E

x (17)

The results suggest good agreement with the analytical solutions, demonstrating the accuracy of the
BB-PD modeling.

In order to evaluate the effect of the kernel function configuration on computational efficiency, we
further increased the number of particles of the model from 20,000 to 2 million. Fig. 9 shows the computation
time for different number of threads (number of thread blocks × number of threads) without considering
data transfer, when the number of particles reaches 2 million (cells = 4). It suggests that the required
calculation time gradually decreases as the number of threads that can be called by the device increases.
When the number of threads is slightly higher than the number of particles in the cell, reaching 512 × 1024,
the running time is the lowest. As the total number of threads continues to increase, the running time
of the program increases, due to the additional usage of thread scheduling and the limitation of memory
bandwidth. Therefore, in all following calculations, the adopted kernel function configuration was always

Comput Model Eng Sci. 2026;146(1):7 13

set to be slightly higher than the number of particles. Moreover, in large-scale simulations, the number of
computed particles generally exceeds the number of active threads supported by the device. Therefore, in the
following examples, we adopted the kernel configuration from the subdomain-based GPU parallel scheme
as the baseline and kept the kernel configuration identical for both classical and subdomain-based GPU
parallel schemes.

Figure 8: Displacement variations along the center lines, (a) ux (x, y = 0), (b) uy (x = 0, y)

32×1024 64×1024 128×1024 256×1024 512×1024 1024×1024

300

400

500

R
un

ni
ng

 T
im

e
(d

at
a

tr
an

sf
er

 is
 n

ot
 in

cl
ud

ed
)

(s
)

Kernel function configuration

Figure 9: The variation of computation time with kernel function configuration

Next, the computational efficiency of proposed GPU parallel scheme was evaluated and compared with
classical parallel schemes and serial programs. We defined the speedup of the parallel program, Sp, and used
its variation with respect to the number of particles to evaluate the actual performance of the proposed GPU
parallel scheme under a fixed hardware configuration.

Sp =
TC

TG
(18)

in which TG and TC represent the time consumed by parallel computation and serial computation under
the same conditions, respectively. Fig. 10a displays the time for the neighbor search by the all approaches.

14 Comput Model Eng Sci. 2026;146(1):7

Obviously, the running time increases with the increase of the particles. Using the particle spacing Δ of 5,
2, 1, 0.67, and 0.5 mm, we constructed five PD models with various particles. Fig. 10b shows the speedup Sp
of classical and subdomain-based parallel schemes as the particle numbers change. As the particle number
increases from 20,000 to 2 million, the speedup ratio of the subdomain-based parallel scheme rises from
98.7× to 4193.0×, while the classical parallel scheme only increases from 101.1× to 1050.9×. It is evident that
when the number of particles significantly exceeds the maximum number of active threads of the device,
the advantage of the proposed parallel scheme in the neighbor search process becomes more pronounced.
Specifically, when the particle number is over 1.125 million, this subdomain-based parallel scheme achieves
a neighbor search runtime nearly 4× faster than the classical parallel scheme. This further validates the
conclusion presented in Section 2.6.

Figure 10: (a) Running time for all scheme and (b) speedups as a function of the computing scale in neighbor search

To analyze the relationship between computational efficiency and computing scale, as shown in Fig. 10,
we performed a theoretical analysis based on the number of floating-point operations [38] (FLOPs) required
for neighbor search and the corresponding computation time (t). For the brute-force neighbor search
method used in the 2D case of example 1, each distance comparison requires approximately 6FLOPs.
Therefore, for the classical GPU parallel scheme, the total number of FLOPs required to complete neighbor
search for n particles is approximately 6 × n × (n − 1)/2 = 3(n2 − n). We then evaluated computational
performance using the ratio of total FLOPs to computation time, as shown in Eq. (19) below,

GFLOP/s = FLOPs/ (t × 109) (19)

As shown in Fig. 11, for the classical parallel scheme, the GFLOP/s value begins to level off when the
number of particles reaches 500,000. This indicates that the computing units are saturated and the memory
bandwidth reaches its limit. In contrast, for the subdomain-based GPU parallel scheme, the saturation is
delayed due to the reduced number of particles within each computational domain. This observation is
consistent with the trend shown in Fig. 10. Moreover, as shown in Fig. 11, for the subdomain-based GPU
parallel scheme, computing resources are abundant at small problem scales, and GFLOP/s increases nearly
linearly with the number of particles. In this regime, performance is mainly limited by hardware launch and
scheduling overhead. As the number of particles further increases, the GPU cores approach full utilization,
the growth of GFLOP/s slows down, and the bottlenecks shift to computation and memory access. Eventually,
as the computational scale continues to increases, GFLOP/s tends to stabilize, indicating that the GPU has

Comput Model Eng Sci. 2026;146(1):7 15

reached its hardware limit. In the proposed scheme, the upper bound of subdomain scale is determined by
GPU memory (Eqs. (14) and (15)). Under this constraint, the subdomain scale can be adjusted according to
the GFLOPs/s parameter to ensure that each subdomain operates near the device’s peak performance region.
This provides a more efficient workload management mechanism. Furthermore, to assess the scalability, we
examined how the computational throughput (GFLOPs/s per watt) of the proposed parallel scheme varies
with particle count across different GPU architectures. The results suggest that the proposed scheme does
not depend on a particular hardware design and exhibits good scalability. The details are provided in Fig. S1
of the Supplementary Material.

0 50 100 150 200

0

20

40

60

80

100

G
FL

O
P/

s

The number of particles

 Classical
 Present work

×104

Figure 11: Computational performance as a function of the computing scale

Fig. 12 displays total runtime of each scheme and the corresponding speedup ratios without considering
the time for data transfer. Due to domain partitioning, the subdomain-based parallel scheme involves
more complex data access operations compared to the classical parallel scheme, which leads to increased
time consumption, especially for small computation models. Thus, the subdomain-based parallel scheme
exhibits lower runtime efficiency for small models, as shown in Fig. 12b. However, as the number of particles
increases, the advantages of the subdomain-based scheme in the neighbor search become significant, and
thus its computational efficiency gradually surpasses that of the classical parallel scheme. This further demon-
strates the performance advantage of the proposed subdomain-based GPU parallel scheme in large-scale
simulation calculations.

Fig. 13 shows the total runtime of the three schemes and the speedup curve of each parallel scheme of
the computational scale with the consideration of the time for data transfer. When the number of particles
increases from 20 thousand to 2 million, the speedup of the classical parallel scheme increases from 90.9×
to 483.5×, while the speedup of the subdomain-based parallel scheme increases from 21.5× to 127.7×. Since
the subdomain-based parallel scheme requires the particle information in the GPU to be updated at each
timestep, the generated data transfer time largely exceeds that of the classical parallel scheme, leading to
limited improvements in the total runtime.

Table 3 lists the detailed running time for principal components when the total number of particles is
2 million. It is obvious that the subdomain-based scheme significantly improves efficiency in the neighbor
search, while the performance in other components is approximately equal to those of the classical parallel
scheme. If we do not consider the data transfer time, the subdomain-based parallel scheme achieves a
speedup of 739.5×, while the classical parallel scheme only reaches 483.5×. However, when data transfer

16 Comput Model Eng Sci. 2026;146(1):7

time is considered, the computational efficiency of the present parallel scheme decreases significantly to only
127.7×. Noteworthy, the graphics memory usage of the proposed parallel scheme was significantly reduced
from 1476 to 684 MiB by approximately 53.7%, suggesting its advantages in large-scale simulations which
requires large graphics memory.

Figure 12: (a) Total running time for all scheme and (b) speedups as a function of the computing scale when not
considering data transfer

Figure 13: (a) Total running time for all scheme and (b) speedups curve with particle scale

Table 3: Running times and speedup of each part (Number of particles: 2 million)

Description Execution time (s) Speedup

Serial Classical Present work Classical Present work
Generate neighborhood 128,156.18 121.95 30.56 1050.9× 4193.0×

Calculate PDforce 78,282.83 58.61 62.62 1334.3× 1335.7×
Attributes updates 241.80 0.75 1.95 323.3× 123.9×

Running time (not include data transmit) 204,826.30 423.65 276.98 483.5× 739.5×
Total 204,826.30 423.65 1603.44 483.5× 127.7×

Comput Model Eng Sci. 2026;146(1):7 17

3.2 A 2D Plate with a Circular Hole
As shown in Fig. 14, a 2D plate with a circular hole in the center was subjected to slow tensile loading

along its horizontal edges. The materials properties of this model are isotropic. The virtual material layer
(Rc) [6] at the top and bottom ends of the plate was located along the boundary of the actual material region
(R) with a thickness of δ in the slow loading stretch area. The loading velocity was 2.7541 × 10−7 m/s, which
is very slow and thus could be regarded as a quasi-static loading model. The particle spacing was set as
Δ = 0.5 mm, resulting in a total of 9684 particles. A time step of Δt = 1 s was adopted, and the entire computa-
tion process iterates 1000 times. Other model parameters are shown in Table 4. Using the subdomain-based
parallel scheme, the model was also divided into the four subdomains for computation.

Figure 14: Geometry of the plate with a circular hole

Table 4: The model parameters for example 2

Model L (mm) W (mm) a (mm) E (GPa) v ρ (kg/m3) sc

2 50 50 5 192 1/3 8000 0.02

Fig. 15 shows the crack path. Although there are no initial cracks, crack nucleates from the stress
concentration areas and then propagates at the 675 s (Fig. 15a). At the 700 s (Fig. 15b), the local damage
values φ of some particles exceeds 0.38, resulting in self-similar crack propagation. Since the loading velocity
is very slow, a typical quasi-static loading characteristic, the crack continues to expand towards the vertical
boundaries as shown in Fig. 15c,d. This highlights the advantage of PD theory in addressing fracture problems
without a pre-crack.

In addition, the acceleration effect of the proposed subdomain-based parallel scheme was then evaluated
by examining the total running time, as shown in Fig. S2 of the Supplementary Material. The results exhibit
similar trends with those of example 1, as suggested in the Supplementary Material.

18 Comput Model Eng Sci. 2026;146(1):7

Figure 15: Crack path in the plate with a circular hole, (a) 675 s, (b) 700 s, (c) 800 s, (d) 1000 s

Table 5 lists the detailed running time for principal components when the total number of particles is
968,572. It is obvious that the subdomain-based scheme significantly improves efficiency in the neighbor
search, while the performance in other components is approximately equal to those of the classical parallel
scheme. If we do not consider the data transfer time, the subdomain-based parallel scheme achieves a
speedup of 834.1×, while the classical parallel scheme only reaches 518.9×. However, when data transfer time
is considered, the computational efficiency of the present parallel scheme decreases significantly to only
144.7×. Notably, its graphics memory usage was significantly reduced from 1050 to 580 MiB, a reduction of
about 44.8%.

3.3 A 2D Plate with a Pre-Existing Crack
As shown in Fig. 16, the third example was a rapidly stretching 2D plate with a horizontal crack of

0.01 m in the center along its horizontal edge, with two loading velocities (v1 = 20 m/s; v2 = 50 m/s).
The materials properties of this model are isotropic. Similar to example 2, the virtual material layer (Rc)
at the top and bottom edges of the plate was the loading region with a thickness of δ along the boundary of
the actual material area R. Using the subdomain-based parallel scheme, the model was also divided into the
four subdomains for computation. The cracked plate was a 2D transient problem, which was solved using
the BB-PD model and the CDEI method. The particle spacing was set to be Δ = 0.1 mm, resulting in a total of

Comput Model Eng Sci. 2026;146(1):7 19

0.25 million particles. The time step is Δt = 1.3367 × 10−8 s. The entire computation process iterates 1250
times, and other model parameters are shown in Table 6.

Table 5: Running times and speedup of each part (Number of particles: 968,572)

Description Execution time (s) Speedup

Serial Classical Present work Classical Present work
Generate neighborhood 31,298.97 28.84 7.58 1085.4× 4131.9×

Calculate PDforce 9654.04 8.47 10.16 1139.4× 949.9×
Attributes updates 32.26 9.88 × 10−2 0.41 326.7× 78.5×

Running time (not include data transmit) 41,011.54 79.03 49.17 518.9× 834.1×
Total 41,011.54 79.03 283.39 518.9× 144.7×

Figure 16: Geometry of a 2D plate with a pre-existing crack

Table 6: The model parameters for example 3

Model L (mm) W (mm) a (mm) E (GPa) v ρ (kg/m3) sc

3 50 50 5 192 1/3 8000 0.04472

Fig. 17 shows the crack pattern for velocity of 20 and 50 m/s, at 16.7 μs, respectively. At 20 m/s, significant
self-similar crack propagation can be observed (see Fig. 17a), which is a typical mode-I type of crack. The
crack tip is determined by the local damage value φ of any particle along the x-axis exceeding 0.38, resulting

20 Comput Model Eng Sci. 2026;146(1):7

in the relationship between crack propagation distance and time, as shown in Fig. 18. The crack propagates
fast in the range of 12 to 16 μs, with a propagation speed of approximately 1750 m/s, which is lower than the
upper limit of the mode-I type crack propagation speed of 2800 m/s (the Rayleigh wave speed) [5]. When
the loading speed increases to 50 m/s, the crack pattern changes from self-similar to bifurcated, as shown
in Fig. 17b. This demonstrates that the PD theory can capture very complex crack branching phenomena
without the use of any external criteria to trigger crack bifurcation.

Figure 17: Crack patterns under different loading speeds, (a) v = 20 m/s, (b) v = 50 m/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
re

ac
k

gr
ow

th
 d

is
ta

nc
e

(m
m

)

Time (�s)

Figure 18: Crack propagation distance over time at a loading speed of 20 m/s

In addition, the acceleration effect of the proposed subdomain-based parallel scheme was evaluated by
examining the total running time, as shown in Fig. S3 of the Supplementary Material. The results exhibit
similar trends with those of example 1, as suggested in the Supplementary Material.

Table 7 lists the detailed running time for principal components when the total number of particles is
1 million. Particularly, the efficiency in the neighbor search are significantly enhanced, while the performance
in other components is approximately equal to those of the classical parallel scheme. If we do not consider the
data transfer time, the subdomain-based parallel scheme achieves a speedup of 1076.8×, while the classical

Comput Model Eng Sci. 2026;146(1):7 21

parallel scheme only reaches 704.1×. However, when data transfer time is considered, the computational
efficiency of the present parallel scheme decreases significantly to only 142.3×. Noteworthy, its graphics
memory usage was reduced from 1032 to 574 MiB, a reduction of about 44.4%.

Table 7: Running times and speedup of each part (Number of particles: 1 million)

Description Execution time (s) Speedup

Serial Classical Present work Classical Present work
Generate neighborhood 30,077.99 30.73 8.21 978.66× 3662.69×

Set crack 0.21 5.02 × 10−4 9.46 × 10−4 422.31× 221.99×
Calculate PDforce 9810.54 10.74 12.96 913.63× 756.99×
Attributes updates 15.37 9.324 × 10−2 0.11 164.89× 138.51×

Running time (not include data transmit) 39,915.90 56.69 37.07 704.1× 1076.8×
Total 39,915.90 56.70 280.59 704.0× 142.3×

3.4 A 3D Column with a Notch
As shown in Fig. 19, the fourth example was a column subjected to compressive loading. The compres-

sive load was applied by imposing prescribed displacement conditions within the neighborhood radius at
both ends of the block. Specifically, a linearly increasing displacement was applied in the boundary region
(Rc) at each time step, which reaches 0.05 mm at step 1000, and then, remains constant. Using the subdomain-
based parallel scheme, the model was also divided into four subdomains for computation, as shown in Fig. 19.
This experiment was a 3D quasi-static problem, which was solved using the ADR method. The particle
spacing was Δ = 0.05 mm, with a total of 13,168 particles. The time step was Δt = 1.0 s, and the total number
of time steps is 20,000. Other detailed parameters are shown in Table 8.

Figure 19: Geometry of a 3D column with a notch

Table 8: The model parameters for example 4

Model L (mm) W (mm) h (mm) hg (mm) Lg (mm) E (MPa) v ρ (kg/m3)
4 10 0.4 0.4 0.05 0.1 10 0.25 7850

Fig. 20 shows displacement in the -z direction and the deformation shape of the column, which suggests
that the maximum displacement appears in the middle of the column and is well consistent with experimental
observations. This further verifies the accuracy of the BB-PD modeling.

22 Comput Model Eng Sci. 2026;146(1):7

Figure 20: Displacement in the -z direction and deformation shape of the column

To analyze the computational efficiency of the subdomain-based GPU parallel scheme, we then gradu-
ally increased the total number of particles to 2,428,248. Here, although this case required 20,000 timesteps
to reach convergence, we only employed 1000 timesteps to evaluate the computational efficiency, because the
runtime of the serial program would become very long when the number of particles reaches millions.

The acceleration effect of the proposed subdomain-based parallel scheme was evaluated by examining
the total running time, as shown in Fig. S4 of the Supplementary Material. The results exhibit similar trends
with those of example 1, as suggested in the Supplementary Material.

Table 9 lists the detailed running time for principal components with the total number of particles
of 2,428,248. The results suggest that this subdomain-based scheme significantly improves efficiency in
the neighbor search, while the time in other components is approximately equal to that of the classical
parallel scheme. If we do not consider the data transfer time, the subdomain-based parallel scheme achieves
a speedup of 571.1×, while the classical parallel scheme only reaches 368.3×. If the data transfer time is
considered, the computational efficiency of the present parallel scheme decreases significantly to only 106.1×.
Noteworthy, the graphics memory usage of the subdomain-based parallel scheme was significantly reduced
from 6890 to 2130 MiB, a reduction of about 69.1%.

Table 9: Running times and speedup of main part (Number of particles: 2,428,248)

Description Execution time (s) Speedup

Serial Classical Present work Classical Present work
Generate neighborhood 21,343.80 28.05 6.13 760.9× 3481.9×

Calculate PDforce 47,009.60 56.89 48.39 826.3× 971.5×
Attribute update 124.91 0.28 0.52 446.1× 240.2×

Running time (not include data transmit) 68,597.30 186.26 120.12 368.3× 571.1×
Total 68,597.30 186.26 646.30 368.3× 106.1×

Comput Model Eng Sci. 2026;146(1):7 23

3.5 Kalthoff-Winkler Experiment
The next numerical example was the Kalthoff-Winkler experiment, which was a dynamic fracture

benchmark problem. As shown in Fig. 21, the experiment investigated the impact of a cylindrical object on
a steel plate with two cracks. In this simulation, the projectile was treated as a rigid body with diameter
D = 50 mm, height H = 50 mm, mass m = 1.57 kg, and an initial downward impact velocity v0 = 32 m/s.
The steel plate was unconstrained in displacement and is initially static. Using the subdomain-based parallel
scheme, the model was also divided into the four subdomains for computation, as shown in Fig. 21. This
experiment was a 3D transient impact problem, which was solved using the CDEI method. The particle
spacing was Δ = 1 mm, with a total of 179,100 particles. The time step was Δt = 1.3367 × 10−8 s, and the total
number of time steps is 1350. Other detailed parameters are shown in the Table 10.

Figure 21: Geometry of Kalthoff-Winkler experiment

Table 10: The model parameters for example 4

Model L (mm) W (mm) H (mm) a (mm) E (GPa) v ρ (kg/m3) sc

5 200 100 9 50 192 1/4 8000 0.01

Fig. 22 shows the crack path at a timestep of 1350, corresponding to 18.045 μs. It suggests that the crack
initiates from the tip of the pre-crack and propagates rapidly with a deflection angle of approximately 68○
from the centerline, eventually forming a symmetric X-shaped fracture pattern. This process exhibits the
typical characteristics of dynamic brittle fracture, and the crack path is approximately straight, in excellent
agreement with the experimental results [39].

In addition, the acceleration effect of the proposed subdomain-based parallel scheme is evaluated by
examining the total running time, as shown in Fig. S5 of the Supplementary Material. The results exhibit
similar trends with those of example 1, as suggested in the Supplementary Material.

24 Comput Model Eng Sci. 2026;146(1):7

Figure 22: Crack patterns of last time steps (18.045 μs)

Table 11 lists the detailed running time for principal components when the total number of particles
is 3,409,032. This subdomain-based scheme significantly improves efficiency in the neighbor search, while
the performance in other components is approximately equal to those of the classical parallel scheme. If we
do not consider the data transfer time, the subdomain-based parallel scheme achieves a speedup of 764.1×,
while the classical parallel scheme only reaches 578.4×. However, when data transfer time is considered, the
computational efficiency of the present parallel scheme decreases significantly to only 31.2×. In particular, its
graphics memory usage was reduced from 9118 to 2764 MiB, a reduction of about 69.7%.

Table 11: Running times and speedup of main part (Number of particles: 3,409,032)

Description Execution time (s) Speedup

Serial Classical Present work Classical Present work
Generate neighborhood 41,563.30 43.78 10.41 949.4× 3992.6×

Set crack 2.49 3.40 × 10−3 3.57 × 10−3 732.4× 697.5×
Impact 52.62 8.86 4.48 5.94× 11.7×

Calculate PDforce 24,019.90 59.88 57.04 410.1× 421.1×
Attribute update 140.86 2.80 × 10−1 3.28 × 10−1 503.1× 429.5×

Running time (not include data transmit) 65,852.70 113.85 86.18 578.4× 764.1×
Total 65,852.70 113.85 2109.42 578.4× 31.2×

Notably, for complicated problems, using the same programming logic as classical parallel schemes
may lead to significant efficiency reduction due to data transfer. For GPU parallelization, the time cost
associated with reading global memory and data transfer is much higher than the time required to compute
the variable. Therefore, when using the subdomain-based parallel scheme, it is advisable to only transfer
necessary particle information and other data should be computed directly for minimizing the number of
read and copy operations.

Comput Model Eng Sci. 2026;146(1):7 25

3.6 Application to Large Numerical Models
Generally, the required graphics memory increases almost linearly as the number of particles increases.

Thus, it is challenging for classical parallel scheme to address very large PD models which require large
graphics memory. To demonstrate the advantage of the subdomain-based parallel scheme in decreasing
graphics memory usage, we further reduced the particle size of example 1 (Fig. 7) and example 4 (Fig. 19) to
0.16 and 0.005 mm, respectively, resulting in particle counts of 18,000,000 and 12,822,400.

Statistically, the example 1 contained 18 double-precision real array variables (double type) for dis-
placement, velocity, acceleration, etc., and 2 integer array variables (int type) for recording the maximum
number of family members of particles (1 element for each particle), and the family number of particles (100
elements for each particle), respectively. Therefore, we could obtain the total byte size of∑Variabl e size =
(18 × 8 + 101 × 4) = 548 byte. As shown in Fig. 23, since the relationship between graphics memory con-
sumption and computational scale is almost linear. This indicates that the extra graphics memory overhead
does not depend on particle count. Thus, we can perform a trial run on a relatively small model before
subdomain partitioning to determine the value of a in Eq. (14). As shown in Fig. 23, the intercept of the
memory consumption curve for the classical parallel scheme is 426, indicating that the additional graphics
memory required by this program is 426 MiB (due to extra memory consumption caused by data alignment
and other reasons). Thus, the total graphics memory required by the overall program can be estimated
using the previously described method as: (548 × 1.8 × 107)/10242 + 426 = 9833 MiB. Similarly, the required
graphics memory for example 4 is estimated to be 34,170 MiB. The detailed calculation process is provided
in Fig. S6. As shown in Table 12, the required memory of the classical parallel scheme for the two examples
is 9838 and 34,172 MiB, respectively. The relative estimation error for example 1 is only 0.05%, while the
estimate for example 4 is nearly exact. This demonstrates that the estimation method presented above is
reasonable. Therefore, when the maximum graphics memory is known, the maximum number of particles
in the subdomain can be estimated by Eq. (14), and the size of the subdomain and the number of subdomains
can then be determined.

Figure 23: The required graphics memory changes with the computational scale (example 1)

To clearly demonstrate the ability of this method to effectively reduce the graphics memory usage by
controlling the size and number of subdomains, we divided the whole model into 1, 2, 4, and 8 regions. As
shown in Fig. 24, with the increase in the number of divided domains, the memory usage of the subdomain-
based parallel scheme decreases significantly. As shown in Table 12, when the number of particles for example

26 Comput Model Eng Sci. 2026;146(1):7

1 and example 4 reaches 18,000,000 and 12,822,400, respectively, the classical parallel scheme requires 9838
and 34,172 MiB of graphics memory. However, the subdomain-based scheme, with 8 subdomains, only
requires 1618 and 4810 MiB, respectively, suggesting a reduction in memory usage of approximately 83.6%
and 85.9%. This indicates that the proposed subdomain-based GPU parallel scheme can significantly reduce
graphics memory usage, effectively addressing the issue of memory limitations in large-scale problems.

Table 12: Memory usage of each parallel program

Model Particle size Memory (MiB)

Classical Present work (cells = 8)
1 (2D) 18,000,000 9838 1618
4 (3D) 12,822,400 34,172 4810

Figure 24: Impact of the number of cells on memory usage, (a) example 1, (b) example 4

Particularly, this subdomain-based parallel scheme was developed based on a single GPU. During
the solution process, it inevitably requires multiple updates of particle information in the GPU, leading to
a decrease in overall efficiency compared to classical parallel schemes that can fit the entire problem in
memory. Therefore, in the application of this parallel scheme, it is essential to minimize unnecessary data
transfer within the program. Ideally, only the necessary basic information should be transferred, while other
intermediate variables should be computed directly within the kernel functions.

4 Discussions
The proposed subdomain-based GPU parallel scheme demonstrates significant advantages in terms of

graphics memory consumption when dealing with large-scale peridynamics computations. By partitioning
the model into multiple subdomains, the required graphics memory is significantly reduced, enabling the
simulation of 2D and 3D PD models with tens of millions of particles. Nevertheless, frequent data transfers
between subdomains negatively affect the overall runtime performance, leading to lower efficiency compared
to some existing optimization strategies.

Notably, the proposed approach is not mutually exclusive with other optimization strategies, which may
be integrated with them to achieve superior performance. For example, the bond-based mapping has been

Comput Model Eng Sci. 2026;146(1):7 27

proven to effectively unroll the inner loop during time integration [25,27]; designing more efficient memory
access strategies can accelerate data retrieval [40]; and adopting mixed-precision computing can further
enhance computational efficiency in non-critical regions [19]. These strategies provide promising pathways
for improving the computational efficiency of the algorithm.

In addition, asynchronous memory operations provided by the CUDA platform also hold promise for
further optimization of the proposed parallel scheme. Using “cudaMemcpyAsync”, particle information of
the next subdomain can be copied to the device while performing computations for the current subdomain.
However, it should be noted that this only works with pinned memory, otherwise, the asynchronous copy
degrades to a synchronous operation. Moreover, asynchronous memory operations would require multiple
subdomains to reside on the device simultaneously, increasing graphics memory consumption and poten-
tially affecting the value of the correction coefficient a in Eq. (14). Nevertheless, this approach can greatly
improve data transfer efficiency, thereby mitigating the current scheme’s limitations in data movement.

Generally, future research can focus on the effective integration of the proposed subdomain-based
scheme with advanced GPU parallelization techniques. Such developments could lead to a more sophis-
ticated and comprehensive GPU parallel architecture, ultimately elevating the performance of large-scale
simulations to a new level.

5 Conclusions
In summary, we proposed a GPU parallel scheme of subdomain computing based on the cell-linked list

method. Compared to classical parallel schemes, this approach divides the model into several subdomains.
By controlling the size and number of these subdomains, large 2D and 3D PD models can be simulated with
significantly reduced graphics memory and improved acceleration performance in key computational steps.
The main conclusions are shown as follows:

(1) The subdomain-based parallel scheme demonstrates sufficient efficiency in examining complicated
problems, in which the estimated crack extension patterns align well with experimental results.
Moreover, it significantly improves computational efficiency compared to the serial program.

(2) The present parallel scheme exhibits excellent efficiency in the neighbor search, which leads to
a significant improvement in overall running efficiency compared to classical parallel schemes
when not considering the time for data transmission. However, it should be noted that the data
transmission required for subdomain-based parallel computation can negatively impact the overall
computational efficiency.

(3) We applied this subdomain-based parallel scheme to a 2D PD numerical example with 18,000,000
particles and a 3D PD example with 12,822,400 particles. As the number of subdomains increases,
graphics memory consumption gradually decreases. Notably, when the number of subdomains reaches
8, the graphics memory usage is reduced by 83.6% and 85.9%, respectively. This is the primary
advantages of the proposed scheme, as it enables large-scale simulations on hardware with limited
graphics memory.

Acknowledgement: The authors acknowledge the financial support from the National Natural Science Foundation
of China.

Funding Statement: Jun Li was supported by National Natural Science Foundation of China (No.: U2441215). Lisheng
Liu and Xin Lai were supported by National Natural Science Foundation of China (No.: 52494933).

Author Contributions: Lisheng Liu conceived and designed the parallel scheme. Zuokun Yang constructed the
corresponding numerical model performed the simulations. Xin Lai evaluated the feasibility of the algorithm and help

28 Comput Model Eng Sci. 2026;146(1):7

the revision. Jun Li completed the revision and refinement. All authors provided insights into data analysis and wrote
the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this study are available
within the article and Supplementary Material. Raw data that support the findings of this study are available from the
corresponding author.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Supplementary Materials: The supplementary material is available online at https://www.techscience.com/doi/10.
32604/cmes.2026.075980/s1. The Supplementary Material includes the following data: (1) Table S1 shows the corre-
sponding code for neighbor search implemented using the three different schemes. (2) Fig. S1 shows the variation in
GFLOPs/s per watt as the particle number changes across different GPU architectures (3) Fig. S2 shows the variation
in running efficiency as the particle number changes for example 2 (a plate with a circular hole). (4) Fig. S3 shows the
variation in running efficiency as the particle scale changes for example 3 (a 2D plate with a pre-existing crack). (5) Fig.
S4 shows the variation in running efficiency as the particle scale changes for example 4 (a 3D column). (6) Fig. S5 shows
the variation in running efficiency as the particle scale changes for example 5 (Kalthoff-Winkler experiment). (7) Fig.
S6 shows the variation of graphics memory required for example 4 with the computation scale.

References
1. Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, et al. Examples of FEM application in manufacturing

technology. J Mater Process Technol. 2002;120(1–3):450–7. doi:10.1016/S0924-0136(01)01210-9.
2. Moukalled F, Mangani L, Darwish M. The finite volume method. In: The finite volume method in computational

fluid dynamics. Cham, Switzerland: Springer International Publishing; 2015. p. 103–35. doi:10.1007/978-3-319-
16874-6_5.

3. Solomon IJ, Sevvel P, Gunasekaran J. A review on the various processing parameters in FDM. Mater Today Proc.
2021;37:509–14. doi:10.1016/j.matpr.2020.05.484.

4. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids.
2000;48(1):175–209. doi:10.1016/S0022-5096(99)00029-0.

5. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct.
2005;83(17–18):1526–35. doi:10.1016/j.compstruc.2004.11.026.

6. Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. J Elast.
2007;88(2):151–84. doi:10.1007/s10659-007-9125-1.

7. Liu Y, Liu L, Mei H, Liu Q, Lai X. A modified rate-dependent peridynamic model with rotation effect for dynamic
mechanical behavior of ceramic materials. Comput Meth Appl Mech Eng. 2022;388:114246. doi:10.1016/j.cma.2021.
114246.

8. Jafaraghaei Y, Yu T, Bui TQ. Peridynamics simulation of impact failure in glass plates. Theor Appl Fract Mech.
2022;121:103424. doi:10.1016/j.tafmec.2022.103424.

9. Sun C, Huang Z. Peridynamic simulation to impacting damage in composite laminate. Compos Struct.
2016;138:335–41. doi:10.1016/j.compstruct.2015.12.001.

10. Hattori G, Hobbs M, Orr J. A review on the developments of peridynamics for reinforced concrete structures. Arch
Comput Meth Eng. 2021;28(7):4655–86. doi:10.1007/s11831-021-09549-y.

11. Ouchi H, Katiyar A, Foster JT, Sharma MM. A peridynamics model for the propagation of hydraulic fractures in
naturally fractured reservoirs. SPE J. 2017;22(4):1082–102. doi:10.2118/173361-pa.

12. Madenci E, Oterkus E. Peridynamic theory. In: Peridynamic theory and its applications. New York, NY, USA:
Springer; 2013. p. 19–43. doi:10.1007/978-1-4614-8465-3_2.

https://www.techscience.com/doi/10.32604/cmes.2026.075980/s1
https://doi.org/10.1016/S0924-0136(01)01210-9
https://doi.org/10.1007/978-3-319-16874-6_5
https://doi.org/10.1007/978-3-319-16874-6_5
https://doi.org/10.1016/j.matpr.2020.05.484
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1016/j.cma.2021.114246
https://doi.org/10.1016/j.cma.2021.114246
https://doi.org/10.1016/j.tafmec.2022.103424
https://doi.org/10.1016/j.compstruct.2015.12.001
https://doi.org/10.1007/s11831-021-09549-y
https://doi.org/10.2118/173361-pa
https://doi.org/10.1007/978-1-4614-8465-3_2

Comput Model Eng Sci. 2026;146(1):7 29

13. Jafarzadeh S, Hillman M. An ultra-high-speed reproducing kernel particle method. Comput Mech.
2025;76(2):279–321. doi:10.1007/s00466-025-02599-0.

14. Zheng G, Li R, Shen G, Zhang X. A parallel acceleration GPU algorithm for large deformation of thin shell
structures based on peridynamics. Eng Comput. 2024;40(5):3009–30. doi:10.1007/s00366-024-01951-x.

15. Liu GR, Liu MB. Smoothed particle hydrodynamics—a meshfree particle method. Singapore: WorldScientific;
2003. doi:10.1142/9789812564405.

16. Macek RW, Silling SA. Peridynamics via finite element analysis. Finite Elem Anal Des. 2007;43(15):1169–78. doi:10.
1016/j.finel.2007.08.012.

17. Domínguez JM, Crespo AJC, Gómez-Gesteira M. Optimization strategies for CPU and GPU implementations of
a smoothed particle hydrodynamics method. Comput Phys Commun. 2013;184(3):617–27. doi:10.1016/j.cpc.2012.
10.015.

18. Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE. A partitioned coupling framework for
peridynamics and classical theory: analysis and simulations. Comput Meth Appl Mech Eng. 2018;340:905–31.
doi:10.1016/j.cma.2018.06.008.

19. Mao Z, Li X, Hu S, Gopalakrishnan G, Li A. A GPU accelerated mixed-precision smoothed particle hydro-
dynamics framework with cell-based relative coordinates. Eng Anal Bound Elem. 2024;161:113–25. doi:10.1016/j.
enganabound.2024.01.020.

20. Xu X, D’Elia M, Foster JT. A machine-learning framework for peridynamic material models with physical
constraints. Comput Meth Appl Mech Eng. 2021;386:114062. doi:10.1016/j.cma.2021.114062.

21. Slattery SR. Mesh-free data transfer algorithms for partitioned multiphysics problems: conservation, accuracy, and
parallelism. J Comput Phys. 2016;307:164–88. doi:10.1016/j.jcp.2015.11.055.

22. Parks ML, Littlewood DJ, Mitchell JA, Silling SA. Peridigm users’ guide, v1.0.0. Livermore, CA, USA: Sandia
National Laboratories (SNL); 2012. doi:10.2172/1055619.

23. Fan H, Li S. Parallel peridynamics-SPH simulation of explosion induced soil fragmentation by using OpenMP.
Comput Part Mech. 2017;4(2):199–211. doi:10.1007/s40571-016-0116-5.

24. Choquette J, Gandhi W, Giroux O, Stam N, Krashinsky R. NVIDIA A100 tensor core GPU: performance and
innovation. IEEE Micro. 2021;41(2):29–35. doi:10.1109/MM.2021.3061394.

25. Boys B, Dodwell TJ, Hobbs M, Girolami M. PeriPy—a high performance OpenCL peridynamics package. Comput
Meth Appl Mech Eng. 2021;386:114085. doi:10.1016/j.cma.2021.114085.

26. Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, et al. DualSPHysics:
open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun.
2015;187:204–16. doi:10.1016/j.cpc.2014.10.004.

27. Wang X, Wang Q, An B, He Q, Wang P, Wu J. A GPU parallel scheme for accelerating 2D and 3D peridynamics
models. Theor Appl Fract Mech. 2022;121:103458. doi:10.1016/j.tafmec.2022.103458.

28. Bartlett J, Storti D. A novel memory-optimized approach for large-scale peridynamics on the GPU. J Peridyn
Nonlocal Model. 2023;5(4):472–90. doi:10.1007/s42102-022-00088-z.

29. Wang X, Li S, Dong W, An B, Huang H, He Q, et al. Multi-GPU parallel acceleration scheme for meshfree
peridynamic simulations. Theor Appl Fract Mech. 2024;131:104401. doi:10.1016/j.tafmec.2024.104401.

30. Han TD, Abdelrahman TS. hiCUDA: high-level GPGPU programming. IEEE Trans Parallel Distrib Syst.
2011;22(1):78–90. doi:10.1109/TPDS.2010.62.

31. Cheng J, Grossman M, McKercher T, Chapman B. Professional CUDA C programming. Indianapolis, IN, USA:
Wrox; 2014.

32. Mattson W, Rice BM. Near-neighbor calculations using a modified cell-linked list method. Comput Phys Commun.
1999;119(2–3):135–48. doi:10.1016/S0010-4655(98)00203-3.

33. Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC. Neighbour lists in smoothed particle hydrody-
namics. Int J Numer Meth Fluids. 2011;67(12):2026–42. doi:10.1002/fld.2481.

34. Hansani KGP, Sumith B, Karunasena HCP. Novel use of the cell-linked list algorithm to reduce computational
time in meshfree based numerical models for plant cell drying. In: 2016 Manufacturing & Industrial Engineering
Symposium (MIES); 2016 Oct 22–22; Colombo, Sri Lanka. p. 1–6. doi:10.1109/MIES.2016.7779991.

https://doi.org/10.1007/s00466-025-02599-0
https://doi.org/10.1007/s00366-024-01951-x
https://doi.org/10.1142/9789812564405
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/10.1016/j.cpc.2012.10.015
https://doi.org/10.1016/j.cpc.2012.10.015
https://doi.org/10.1016/j.cma.2018.06.008
https://doi.org/10.1016/j.enganabound.2024.01.020
https://doi.org/10.1016/j.enganabound.2024.01.020
https://doi.org/10.1016/j.cma.2021.114062
https://doi.org/10.1016/j.jcp.2015.11.055
https://doi.org/10.2172/1055619
https://doi.org/10.1007/s40571-016-0116-5
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1016/j.cma.2021.114085
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.tafmec.2022.103458
https://doi.org/10.1007/s42102-022-00088-z
https://doi.org/10.1016/j.tafmec.2024.104401
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1016/S0010-4655(98)00203-3
https://doi.org/10.1002/fld.2481
https://doi.org/10.1109/MIES.2016.7779991

30 Comput Model Eng Sci. 2026;146(1):7

35. Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford, UK: Oxford University Press; 2017.
36. Silling SA, Lehoucq RB. Convergence of peridynamics to classical elasticity theory. J Elast. 2008;93(1):13–37. doi:10.

1007/s10659-008-9163-3.
37. Kilic B, Madenci E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic

theory. Theor Appl Fract Mech. 2010;53(3):194–204. doi:10.1016/j.tafmec.2010.08.001.
38. Mao Z, Liu GR. A Lagrangian gradient smoothing method for solid-flow problems using simplicial mesh. Int J

Numer Meth Eng. 2018;113(5):858–90. doi:10.1002/nme.5639.
39. Kalthoff JF, Winkler S. Failure mode transition at high rates of shear loading. Impact Load Dyn Behav Mater.

1988;1:185.
40. Yang Y, Su Z, Liu Y. A fast bond-based peridynamic program based on GPU parallel computing. Eng Anal Bound

Elem. 2025;172:106133. doi:10.1016/j.enganabound.2025.106133.

https://doi.org/10.1007/s10659-008-9163-3
https://doi.org/10.1007/s10659-008-9163-3
https://doi.org/10.1016/j.tafmec.2010.08.001
https://doi.org/10.1002/nme.5639
https://doi.org/10.1016/j.enganabound.2025.106133

	A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics Modeling with Reduced Graphics Memory
	1 Introduction
	2 The Theory and Implementation of Subdomain-Based GPU Parallel Scheme
	3 Numerical Examples
	4 Discussions
	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

