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ABSTRACT: The integration of machine learning (ML) into geohazard assessment has successfully instigated a
paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered
unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational
adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of
the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that
aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of
87 foundational studies is used to map the intellectual and methodological contours of this rapidly expanding field.
The analysis reveals that current research efforts are concentrated predominantly on landslide and flood assessment.
Methodologically, tree-based ensembles and deep learning models dominate the literature, with SHapley Additive
exPlanations (SHAP) frequently adopted as the principal post-hoc explanation technique. More importantly, the review
further documents how the role of XAI has shifted: rather than being used solely as a tool for interpreting models
after training, it is increasingly integrated into the modeling cycle itself. Recent applications include its use in feature
selection, adaptive sampling strategies, and model evaluation. The evidence also shows that GeoXAI extends beyond
producing feature rankings. It reveals nonlinear thresholds and interaction effects that generate deeper mechanistic
insights into hazard processes and mechanisms. Nevertheless, several key challenges remain unresolved within the field.
These persistent issues are especially pronounced when considering the crucial necessity for interpretation stability, the
demanding scholarly task of reliably distinguishing correlation from causation, and the development of appropriate
methods for the treatment of complex spatio-temporal dynamics.
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1 Introduction
Geohazards, spanning from landslides and floods to wildfires and earthquakes, represent a mounting

threat to human populations and critical infrastructure. This complex problem is being significantly intensi-
fied by the dual pressures of global climate change and rapid urbanization [1]. Consequently, the capacity to
accurately predict where and when these destructive events might occur is not just beneficial but critical for
establishing effective risk management strategies [2], informing strategic land-use planning decisions [3], and
operating reliable early warning systems [4]. For decades, the field has tackled this challenge using two main
approaches; mechanistic models and data-driven statistical models [5]. Physics-based models, built on the
principles of geomechanics and hydrology, give valuable insight into how hazards form and their underlying
processes [6]. However, these models often face significant limitations when applied at a regional scale.
Specifically, such regional modeling necessitates immense demands on computational power and requires a
high quality and depth of detailed geotechnical input data which is rarely available in practice.

To circumvent these traditional limitations, data-driven methodologies, particularly those based on
machine learning (ML), have emerged as a major paradigm shift in the field of geohazard susceptibility
mapping and forecasting [7,8]. By effectively utilizing vast geospatial datasets, these ML models have
provided a considerable advancement in predictive capability [9]. This progress encompasses a diverse array
of techniques, ranging from powerful ensemble models—such as random forest (RF) [10] and eXtreme
gradient boosting (XGBoost) [11–13]—to more sophisticated deep learning (DL) architectures, including
convolutional neural networks (CNNs) [14,15], long short-term memory (LSTM) networks [16,17], and graph
neural networks (GNNs) [18]. However, this undeniable success is accompanied by a fundamental challenge:
the well-known black-box problem [19,20]. The very complexity that grants these models their predictive
strength simultaneously obstructs an understanding of their underlying mechanisms and internal decision-
making processes. This lack of transparency remains as a major obstacle to their practical implementation,
especially in high-stakes, mission-critical scenarios [21]. When it comes to high-stakes decisions, such as
those made by policymakers, stakeholders, or civil protection agencies, simply receiving a prediction isn’t
sufficient; they must be able to comprehend, validate and ultimately justify the rationale behind the model’s
recommendation [22].

Building on this critical need for justified decision-making, explainable AI (XAI) has emerged precisely
to address the transparency challenge in geohazard prediction systems [23]. Essentially, XAI provides
researchers and practitioners with an extensive toolkit of methods, all specifically engineered to take
the complex predictions and often-opaque internal logic of advanced predictive models and make them
intelligible to human domain experts [24,25]. In the context of earth sciences, the utilization of geohazard
explainable artificial intelligence (GeoXAI) has recently seen a rapid expansion [26,27]. Its function has
matured well beyond simple, passive post-hoc interpretation—such as merely ranking the importance of
input features [28]. Instead, GeoXAI now actively influences the modeling process itself [29]. Currently,
researchers employ GeoXAI for strategic tasks like intelligent feature selection [30], targeted model simplifi-
cation [31], and rigorously validating a model’s underlying logic against established physical principles [32].
At the vanguard of this field, XAI is even being employed as a tool for scientific discovery, helping scholars
uncover latent physical parameters [33], pinpoint novel hazard precursors, and fundamentally connect the
physics-based and data-driven modeling domains.
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While GeoXAI has advanced rapidly, a genuinely comprehensive synthesis of the field is still absent
in the current literature. Most existing review papers focus narrowly on a few particular hazards or
methodological tools (see Table 1). Therefore, there is a recognized and critical need for the community to
consolidate this dispersed knowledge more holistically and, crucially, to establish a clear, unified agenda for
future research efforts. This systematic review is designed to address that gap. First, it maps out the intellectual
and thematic structure of GeoXAI by using quantitative and thematic analyses. Building from there, the
review synthesizes the mechanistic insights into hazard processes that XAI has produced, such as identifying
thresholds, interactions, and the spatio-temporal dynamics of hazards. This paper then traces the evolution
of XAI, following its development from a passive post-hoc explanation tool into a more active component
within the modeling lifecycle. Finally, the review outlines the frontier challenges—which include uncertainty
quantification, causal inference, and merging physics-based with data-driven approaches—to propose a
research roadmap aimed at developing robust, transparent, and operational geospatial artificial intelligence
(GeoAI) systems. By bringing together these state-of-the-art advances, this work aims to give researchers
and practitioners a solid foundation and a forward-looking perspective for advancing trustworthy AI in
geohazard science and risk management. Accordingly, this study aims to provide a comprehensive and
systematic synthesis of explainable artificial intelligence (XAI) applications in geohazard science, identify
their methodological evolution, and establish a research roadmap to guide future GeoXAI development.

Table 1: Comparison of existing review papers with the present study

Reference Thematic focus Methodological
scope Key limitations & distinction from this review

[34] Landslide
susceptibility

Statistical and ML
models

Seminal review on best practices for susceptibility
assessment, but pre-dates the widespread adoption of

modern XAI tools (e.g., SHAP).

[35] Landslide
susceptibility

Comparative ML
performance

Focuses strictly on predictive performance metrics
(AUC/accuracy) of algorithms; lacks systematic

discussion on model transparency.

[36] General
geohazards

AI applications
(general)

Provides a high-level narrative overview of AI trends;
discusses XAI only briefly as an emerging challenge

without a systematic synthesis.

[37] Flood mapping Deep learning
architectures

Comprehensive review of CNNs/DL models, but
treats explainability as a minor subsection rather than

a core evaluation criterion.

[38] Disaster risk
management

XAI in disaster
management

Covers a broad spectrum of disaster phases
(response, recovery); lacks specific focus on the

physical modeling mechanisms of hazard generation.

This study (2026) GeoXAI
(Multi-hazard)

Systematic review
of XAI and

physical insights

First systematic synthesis of XAI methods specifically
for understanding geohazard mechanisms,

spatiotemporal dynamics, and addressing the
correlation-causation gap.

2 Methodology
To ensure a comprehensive and unbiased synthesis, the review followed the PRISMA 2020 protocol,

providing a transparent and standardized approach for systematic literature analysis. This ensures that
the final set of selected articles accurately reflects the contemporary research landscape and satisfies the
core objectives of this review. The methodology was guided by closely following the Preferred Reporting
Items for systematic reviews and meta-analyses (PRISMA) framework [39,40]. This approach was explicitly
engineered to be transparent, fully reproducible, and rigorously thorough, thereby ensuring that the final set
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of selected articles accurately reflects the contemporary research landscape and completely satisfies the core
objectives of this review.

2.1 Search Strategy and Database Selection
The web of science (WoS) core collection was chosen as the primary database for this work. The

selection of this database was based on several critical factors: its stringent curation process, complete citation
tracking capabilities [41,42], and its strong reputation for consistently indexing high-impact, peer-reviewed
articles [43,44]. Consequently, this choice aligns strongly with the study’s primary objective: to effectively
synthesize the most influential and methodologically sound research specifically within the GeoXAI field.
To ensure the successful retrieval of a body of studies that was simultaneously comprehensive and precisely
focused, a detailed search string was subsequently developed and meticulously fine-tuned by the researchers.
The final query was structured around three essential core pillars: the geohazard context, the underlying ML
methodology, and the explainability component. A typical search string is shown below:

TS = (“landslide” OR “flood” OR “wildfire” OR “earthquake” OR “drought” OR “geohazard*”) AND
(“machine learning” OR “artificial intelligence” OR “deep learning” OR “ensemble learning”) AND (“explain-
able AI” OR “XAI” OR “interpretability” OR “SHAP” OR “LIME” OR “Grad-CAM” OR “causal inference”
OR “physics-informed”).

The search was deliberately restricted to articles published between 01 January 2021, and September
2025. This precise temporal constraint constitutes a strategic choice, implemented to capture the modern
paradigm of algorithmic explainability effectively. Before the main review, a preliminary scoping analysis
decisively revealed that the first significant wave of studies applying contemporary XAI frameworks (e.g.,
SHAP) to geohazard assessment began to proliferate quite notably in 2021. Consequently, this focus ensures
that the review analyzes a coherent body of cutting-edge literature that is actively shaping the future direction
of the field, thereby avoiding a broad overview of older, conceptually distinct research focused merely on
general model interpretation.

2.2 Screening and Selection Process
To ensure a systematic and unbiased review, the article selection process rigorously followed the four-

stage PRISMA protocol (Fig. 1).
Identification: Executing the optimized search string on the WoS database initially yielded 482 articles,

from which 34 records were removed after initial filters.
Screening: Following identification, the titles and abstracts of all 448 articles were independently

screened by two separate reviewers. The reviewers’ role was to meticulously assess relevance against the
established core inclusion criteria. This step proved critical: articles were primarily excluded if they clearly
fell outside the thematic scope. Examples of such exclusions include studies where XAI was applied only to
medical imaging, where ML was used solely for mineral exploration, or, importantly, geohazard studies that
completely lacked an XAI component. This initial screening successfully resulted in a substantial reduction
of the pool, moving us toward the set of potentially eligible papers.

Eligibility: The full text of all remaining articles (108) was subsequently retrieved for a detailed eligibility
assessment. During this more rigorous review phase, articles were systematically excluded if they failed to
meet the necessary methodological depth (for instance, if the application of XAI was superficial or limited
solely to a standard feature importance plot without any deeper analysis), were not original peer-reviewed
research (e.g., conference papers, existing reviews, or book chapters), or failed to satisfy other specific
inclusion criteria.
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Figure 1: PRISMA-based workflow showing the four-step process (identification, screening, eligibility, and inclu-
sion) used for selecting the 87 studies analyzed in this GeoXAI systematic review. This ensures transparency and
reproducibility of the literature selection process

Inclusion: Following the full-text review, a final consensus was reached on 87 articles that fully met all
established criteria. This highly curated collection of studies serves as the foundation for quantitative
mapping, thematic synthesis, and critical analysis presented in the subsequent sections of this paper. Fig. 1
summarizes this entire process using the PRISMA flow diagram. With the final corpus of 87 studies
established, the following section synthesizes their collective findings—mapping how XAI has been adopted,
adapted, and advanced within geohazard modeling over the past five years.

2.3 Inclusion and Exclusion Criteria
To effectively maintain both the required focus and requisite academic rigor of this review, the following

explicit criteria were consistently applied throughout the entire screening process:

2.3.1 Inclusion Criteria
– The studies selected had to explicitly apply one or more XAI techniques to either the modeling or

assessment of a geohazard (e.g., landslides, floods, wildfires, erosion, earthquakes, subsidence).
– Importantly, the paper needed to implement a recognized post-hoc XAI framework (such as SHAP,

LIME, or Grad-CAM) or utilize an intrinsically interpretable (glass-box) model [45]. Studies reporting
only standard, model-internal feature importance metrics were generally considered insufficient for
inclusion. Such papers were ruled out unless they demonstrated a genuine engagement with the
broader XAI literature and provided analysis beyond these basic measures. This criterion was central to
distinguishing genuine GeoXAI research from broader ML applications.

– The publication must be a peer-reviewed, original research article in a scientific journal.
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– The article must be published in English between 01 January 2021, and September 2025.

2.3.2 Exclusion Criteria
– Studies using ML for geohazards but lacking any explicit explainability component.
– Studies focused on XAI applications in non-geospatial or non-environmental domains.
– Review articles, meta-analyses, book chapters, conference proceedings, and pre-prints.
– Methodological papers that develop new XAI techniques without applying them to a concrete—

geohazard case study.

3 Results

3.1 The Emerging Landscape: A Quantitative and Thematic Analysis
This section provides a comprehensive statistical and thematic overview of the GeoXAI research

landscape, mapping its main application areas, dominant methodologies, and key geographical research
centers. The field where XAI meets geohazard assessment; a domain termed GeoXAI; is no longer just
a theoretical idea but has become a rapidly expanding and vibrant area of scientific research [46,47]. A
statistical analysis of the papers foundational to this review reveals a clear and accelerating growth pattern.
The field has seen an exponential jump in publications, especially since 2022, a surge that points to a
critical shift within the geoscientific community (Fig. 2). There is a clear move away from simply accepting
ML models as high-performing black-boxes and a growing demand for transparency, trustworthiness, and
deeper mechanistic insight.

Figure 2: Temporal distribution of the reviewed GeoXAI publications (2021–2025), illustrating the exponential growth
of the research field

As summarized in Fig. 3, the thematic landscape of GeoXAI shows a field with both focused depth and
expanding breadth. Landslides and various forms of flooding (e.g., pluvial, fluvial, flash) have become the
dominant testbeds for this research, accounting for a large majority of applications. There is a logical reason
for this focus. These hazards are typically backed by large historical inventories and well-defined conditioning
factors, which offer a solid basis for building and testing complex models. At the same time, the field is
quickly broadening to cover other geohazards, now including wildfires, various forms of erosion (gully, soil),
and earthquake-related risks. The growing flexibility and adoption of this methodology across the Earth
sciences is highlighted by more specialized applications, such as studies on sinkhole susceptibility [48], land
subsidence [49], and even failures in geotechnical infrastructure [50].
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Figure 3: Thematic landscape of the reviewed GeoXAI studies showing (a) distribution of research by hazard type,
(b) frequency of explainability methods, and (c) hierarchy of ML/DL models. The figure highlights landslides and floods
as dominant applications and SHAP as the prevailing interpretation tool

The methodological core of the entire GeoXAI toolkit rests decisively on the performance ceiling of
its chosen ML algorithms. In this area, tree-based ensemble methods are clearly the primary methods.
Algorithms like RF, XGBoost, and Light Gradient Boosting Machine (LightGBM) are deployed extensively,
mainly because of their well-established reputation for exceptional robustness and consistent high predic-
tive accuracy across various geohazard datasets. Moving past these standard ensembles, researchers are
increasingly leveraging sophisticated DL architectures for more advanced predictive modeling, particularly
when intricate data types are involved [12]. For instance, CNNs are remarkably effective when it comes to
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processing gridded spatial information, while researchers typically utilize LSTM networks for detailed time-
series data analysis. Additionally, the field’s advanced toolkit has recently expanded its capacity with GNNs,
a class of models uniquely engineered to capture and learn directly from the intrinsic spatial relationships
embedded within complex geographic data structures [51]. A significant development parallel to these
modeling advancements is the rise of automated ML (AutoML). The synthesis reveals that AutoML is
shifting from a mere efficiency tool to a critical component of the GeoXAI workflow. Frameworks such
as AutoGluon [52], tree-based pipeline optimization tool (TPOT) [53], and Bayesian optimization engines
like Optuna [54,55] are now being employed to democratize high-performance modeling. For instance, [52]
demonstrated that an AutoML framework could generate a state-of-the-art landslide susceptibility model
in just 156 s, a task that typically requires weeks of manual tuning. Crucially, within the GeoXAI paradigm,
AutoML does not just automate prediction; it enhances process transparency. Studies like [53] utilize the
visualization tools inherent in these frameworks (e.g., hyperparameter importance plots) to explain how
the model reached its optimal architecture, thereby adding a layer of interpretability to the optimization
process itself.

In the domain of interpretability, the research community has shown an overwhelming consensus,
effectively converging on SHAP (SHapley Additive exPlanations) as the de facto standard for post-hoc
explanation. This consensus exists because of the method’s rigorous game-theoretic foundation, which
has firmly established SHAP as the premier analytical tool available. This robust theoretical underpin-
ning is what enables researchers to meticulously dissect and precisely quantify the individual, specific
contribution of every conditioning factor to the final prediction outcome. Other methods, however, play
important complementary roles. local interpretable model-agnostic explanations (LIME) is often employed
for instance-specific diagnoses [56,57], while gradient-weighted class activation mapping (Grad-CAM) is the
preferred technique for visualizing the spatial focus of CNNs in image-based tasks [58,59]. The increasing
adoption of a multi-tool approach—where the insights derived from several distinct XAI techniques are
strategically fused—is a compelling indicator of the growing methodological sophistication and maturity
now characterizing the geohazard modeling community [60,61].

Finally, the geographic distribution of GeoXAI research highlights its global relevance (Fig. 4). While
China is a leader in producing a high volume of impactful studies, research groups from Europe, the
United States, Iran, and Türkiye are also making significant contributions. The widespread nature of this
work points to a shared international agreement: tackling the common challenges of geohazards requires
transparent and trustworthy AI. In essence, this quantitative overview shows a field defined by its rapid
growth. It has a diversifying range of applications, an increasingly sophisticated toolkit, and a truly global
research community.

To provide a systematic and more detailed understanding of the methodological toolkit that underpins
GeoXAI, we comparatively summarize the principal explainability frameworks found in the litera-
ture. Table 2 offers a structured overview of these different methods. The comparison itself is structured
around several key aspects for each framework: its core principles, how it’s typically implemented, the
predictive models it’s often paired with, and specific examples of its application to geohazards.
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Figure 4: Geographic distribution of GeoXAI research based on the affiliations of the primary authors, highlighting
the global research hubs and collaborative landscape

Table 2: A comparative overview of the primary XAI methodologies applied in geohazard assessment, detailing their
core principles, typical applications, advantages, limitations, and representative studies from the reviewed literature

XAI method Core principle
/mechanism

Typical
applications
and context

Advantages Limitations Representative studies

SHAP

A game-theoretic
method that fairly

attributes prediction
output to each input
feature based on its

marginal contribution
across all possible
feature coalitions.

Domains:
Landslides,

floods,
wildfires, etc.
Models: RF,
XGBoost,

CNN, LSTM,
GNN

• Strong
theoretical
foundation.
• Provides

both global and
local

explanation
consistency.
• Quantifies

feature
interaction

effects.

• Computationally
intensive.
• Can be

misinterpreted
with correlated

features.
• Sensitive to the

background
dataset.

• Choubin et al. [62]:
Exemplifies a

comprehensive
end-to-end workflow.

• Yao et al. [63]:
Exemplifies deep
spatio-temporal

analysis.
• Lv et al. [64]:

Exemplifies
comparative model

interpretation.

LIME

Approximates a
complex model with a
simple, interpretable
surrogate (e.g., linear
model) in the local
vicinity of a single

prediction.

Domains:
Flood

segmentation,
image

classification,
localized
diagnosis.

Models: Any
black-box

model,
especially

CNNs.

• Highly
intuitive for
individual

cases.
• Model-
agnostic.

• Comput
ationally

efficient for
single

explanations.

• Local
explanations only;

no global view.
• Can be unstablze

depending on
neighborhood

definition.
• May not be
faithful if local

boundary is highly
non-linear.

• Purohit and
Pujari [56]: Exemplifies
use as a diagnostic tool

for error analysis.
• Gao and Wang [65]:

Exemplifies
personalized risk

explanation.

(Continued)
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Table 2 (continued)

XAI method Core principle
/mechanism

Typical
applications
and context

Advantages Limitations Representative studies

Permutation
feature importance

(PFI)

Measures feature
importance by
calculating the

decrease in model
performance (e.g.,

accuracy, RMSE) when
a single feature’s values
are randomly shuffled.

Domains:
Flood

forecasting,
gully erosion.
Models: RNN,
GRU, LSTM
(time-series),

RF.

• Model-
agnostic and

intuitive.
• Directly
measures
impact on

generalization
error.

• Effective for
capturing
temporal

dependency in
time-series

when applied
to lag features.

• Computationally
expensive for large

datasets.
• Can be biased if
features are highly
correlated (creates

unrealistic data
combinations).

• Provides global
importance only
(no local instance

explanation).

• Gholami et al. [61]:
Exemplifies use with

RNN/GRU for
temporal susceptibility.

• Slater et al. [66]:
Exemplifies sensitivity

analysis in dynamic
flood modeling.

Grad-CAM

A visualization
technique that

produces a heatmap
highlighting important

input regions for a
prediction by using the
gradients of the target

class.

Domains:
Flood

segmentation,
image

classification.
Models: CNNs,
U-Net, vision
transformers.

• Visually
intuitive

(where the
model looks).
• Computa

tionally
efficient.

• Excellent for
validating
physical

plausibility of
spatial

reasoning.

• Explanations can
be coarse/low-

resolution.
• Explains where

but not necessarily
‘why’.

• Limited to
models with

convolutional-like
structures.

• Sanderson et al. [58]:
Exemplifies validation
of multi-modal data

fusion.
• Wang et al. [67]:

Exemplifies validation
of a model’s adaptive

reasoning.

Interpretable by
design/Physics-

informed

A class of glass-box
models where

transparency is an
intrinsic architectural

feature, often by
embedding physical

laws (e.g., PDEs) into
the model’s structure or

loss function.

Domains:
Landslide

mechanics,
wildfire spread,

flood
forecasting.

Models:
PINNs, KANs,

custom
architectures.

• Produces
physically
plausible

predictions.
• Can infer
unobserved

physical
parameters.

• Provides the
highest level of
transparency

and trust.

• Requires
well-defined

governing
equations or strong
domain knowledge.
• Can be complex
to design and train.

• Applicability
may be limited to

problems with
known physics.

• Dahal and
Lombardo [68]:

Exemplifies inferring
latent geotechnical

parameters.
• Vogiatzoglou

et al. [69]: Exemplifies
parameter learning for

physical models.
• Taghizadeh

et al. [70]: Exemplifies
novel interpretable

architecture (KAN).

To address the need for a quantitative synthesis beyond thematic mapping, we analyzed the reported
performance metrics and XAI efficacy across the reviewed studies (summarized in Table 3). This synthesis
reveals distinct methodological patterns tailored to specific hazard types. For Landslide susceptibility, tree-
based ensembles (RF, XGBoost) paired with SHAP are the dominant standard, consistently delivering high
predictive performance (Mean AUC ≈ 0.92) and robust feature attributions. In contrast, Flood assessment
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exhibits a bifurcation: susceptibility mapping relies heavily on tree-based SHAP (similar to landslides),
while flood inundation and forecasting increasingly employ deep learning architectures (CNNs, LSTMs)
interpreted via Grad-CAM and time-dependent SHAP, respectively. While a direct statistical meta-analysis
is constrained by the heterogeneity of validation metrics (e.g., AUC vs. RMSE vs. NSE), the aggregated data
indicates that hybrid models (integrating XAI in the loop) generally yield a performance improvement of
2%–5% over baseline black-box models by facilitating the removal of spurious features.
Table 3: Quantitative synthesis of dominant ML architectures, XAI methods, and reported performance ranges across
key geohazards

Geohazard type Dominant ML
models

Primary XAI
methods

Reported
performance range

(typical)

Key physical insights uncovered
by XAI

Landslides
Tree ensembles
(RF, XGBoost,

LightGBM)

SHAP
(TreeExplainer),

PDP

AUC: 0.85–0.98
Acc: 85%–93%

Identification of slope-rainfall
thresholds; distinguishing

conditioning vs. triggering factors.

Floods
(susceptibility)

RF, SVM, ensemble
stacking

SHAP,
permutation
importance

AUC: 0.88–0.96
Identifying topographic controls

(TWI, distance to river) vs. urban
factors (imperviousness).

Floods (forecasting
/mapping) CNN, LSTM, GNN Grad-CAM,

deep SHAP, IG
NSE: 0.70–0.93
IoU: 0.60–0.85

Visualizing spatial attention on
river networks; quantifying

time-lag effects of upstream runoff.

Wildfires RF, MaxEnt, DNN SHAP,
interaction plots AUC: 0.82–0.94

Synergistic effects of temperature
and anthropogenic proximity;
seasonal fuel preconditioning.

Gully/soil erosion RF, XGBoost SHAP, spatial
maps AUC: 0.90–0.96

Thresholds for slope-area
relationships; impact of land-use

change on erosion initiation.

Earthquakes
Hybrid

(CNN-XGBoost),
PINN

SHAP,
physics-based

extraction

Acc: 85%–99%
R2: 0.97 (magnitude)

Validating seismic precursors;
distinguishing geophysical signals
from noise in deformation data.

3.2 Unpacking the Black-Box: Core Insights from XAI Applications
The true value of integrating XAI into geohazard modeling lies in its capacity to transform a model’s

outputs from opaque predictions into a authentic source of new scientific knowledge and actionable intelli-
gence [71]. By systematically unpacking the black-box, researchers are empowered to move decisively beyond
simply knowing what a model predicts, allowing them instead to fully understand why it arrives at certain
decisions [49]. Critically, this essential process of inquiry unfolds across two distinct, yet complementary,
scales: the global and the local.

3.2.1 Global vs. Local Interpretability: From General Drivers to Site-Specific Diagnosis
A fundamental duality exists in model interpretation. Global interpretability aims to elucidate the

model’s behavior in its entirety, specifically by identifying the average influence of each conditioning factor
across the whole study area [72,73]. Essentially, it answers the strategic question: What are the most important
drivers of this hazard in this region? Local interpretability, in sharp contrast, involves dissecting a single,
specific prediction for an individual data point, such as an isolated pixel, a distinct slope unit, or a single
structure. It answers the tactical question: Why was this specific location assigned to this particular risk
level? While both global and local interpretations are essential, the synthesis reveals that it is the power of
local interpretation that most effectively bridges the gap between high-performance predictive modeling and
crucial operational decision-making.
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At the global scale, interpretation provides the crucial first step of understanding broad hazard
mechanisms. It provides a crucial initial step, often achieved through analyzing SHAP summary plots or
reviewing feature importance rankings. These global interpretation methods are instrumental in two primary
areas: first, they confirm established domain knowledge, and second, they reliably pinpoint the dominant
predisposing and triggering factors across a macro scale. Such global interpretations, for example, have been
successfully used in various studies to identify key drivers. Reference [74] found the Fire Weather Index
to be the dominant factor driving wildfire risk throughout Italy. Similarly, these techniques consistently
validate that elements like distance to streams and topographic wetness are critical in assessing flood
susceptibility [62]. Moreover, research has clearly demonstrated that specific seismological parameters are
paramount for accurately assessing earthquake probability [75]. Notably, this level of analysis effectively
provides the broad, essential scientific context required for effective regional planning and informed policy
development. However, integrating spatiotemporal analysis into these large-scale predictions remains a
frontier challenge. In continental-scale assessments, treating space and time as static features can obscure
critical regional variances. Recent applications address this by integrating dynamic inputs directly into the
XAI framework. For instance, in a pan-European wildfire study, [76] utilized Spatio-temporal SHAP Maps to
demonstrate that the drivers of fire risk shift from solar radiation in Southern Europe to precipitation deficits
in Northern Europe, and that these drivers have distinct seasonal time-lags. This demonstrates that for large-
scale modeling to be operationally valid, XAI must move beyond global averages to reveal the heterogeneous
spatiotemporal mechanisms driving the hazard.

Crucially, local interpretations do more than just illustrate global trends on a smaller scale; they often
reveal that site-specific mechanisms can deviate significantly from the regional average. A compelling
example is found in Teke and Kavzoglu [57]. A global landslide model identified slope and elevation as the
dominant regional drivers. However, when researchers conducted a local analysis of three distinct landslides
in that same area, they found that a completely different factor was the primary cause for each one. This
finding is profound because it shows that a one-size-fits-all mitigation strategy based only on global drivers
would be fundamentally flawed. As noted in Ibrahim et al. [50], the local context—whether it’s a unique
geological feature or a human influence—can often override the general trend.

Ultimately, the most mature GeoXAI frameworks leverage a synergistic workflow between the two
scales. Peng et al. [60] offers a clear example of this synergy. The study first used global SHAP to understand
network-wide trends in flood-induced pavement damage. It then employed local LIME to diagnose the
specific impact of a flood on an individual road segment. This ability to shift from the general trend (what
matters everywhere) to the specific cause (why it mattered here) is the hallmark of an effective explainable
system. While global interpretability provides the scientific foundation, it is the local explanation that makes
AI operational. The capacity to deliver a specific diagnosis for a single hillslope, building, or asset is what
turns a prediction into actionable knowledge and builds the trust required for real-world adoption.

Despite the utility of global and local interpretations, it is crucial to distinguish between explaining
a model’s internal logic and establishing true physical causality. This review highlights that post-hoc tools
like SHAP explain the model, not necessarily the physical reality. A critical comparative study by [64]
demonstrated that different high-performance models (e.g., XGBoost vs. DenseNet) can yield contradictory
feature attributions for the same landslide inventory, revealing that explanations are often model-dependent
rather than physically absolute. Furthermore, standard XAI frameworks face significant challenges with
time-variant features. As noted by [75], algorithms like SHAP were primarily designed for static tabular data;
consequently, applying them to dynamic, time-series geohazard data often requires simplified aggregations
that may obscure the temporal evolution of risk triggers, such as the changing lag-effects of rainfall.
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3.2.2 Beyond Linear Importance: Uncovering Thresholds and Complex Interactions
Global feature importance rankings provide a valuable overview, but the most significant scientific

insights from XAI are found when the analysis moves beyond simple linear attribution. The real value
comes from exploring the non-linear, conditional, and interdependent relationships that drive complex
Earth systems. High-performance ML models are particularly good at learning these nuanced patterns
from data. In turn, XAI tools like SHAP dependence plots and interaction analyses provide a way to make
these learned mechanisms transparent and open to interpretation. The synthesis of the literature conducted
effectively reveals two critical capabilities within this domain: (1) The identification of quantitative, physically
meaningful thresholds that translate a model’s continuous predictions into actionable rules, and (2) The
discovery of complex interaction effects that reveal the synergistic recipes for geohazards.

A key function of XAI is to demystify the complicated decision boundaries hidden inside any black-
box model. Tools like SHAP dependence plots, for example, are highly effective at visualizing the intricate
relationship between a specific feature’s value and its isolated, marginal impact on the final model prediction.
Significantly, this unique capability successfully reveals critical tipping points where the inherent geohazard
susceptibility dramatically changes. This specific capability has been leveraged powerfully and successfully
to accelerate the operationalization of predictive models, demonstrating particular utility for deployment
within critical early warning systems [77]. For example, several specific studies [78,79] successfully utilized
their XAI frameworks to directly extract the precise numerical parameters needed to trigger alerts. This led
to the identification of clear thresholds—such as daily rainfall (>5 mm), antecedent moisture (>15 mm), and
reservoir water level (∼145 m)—which definitively signify a sharp increase in landslide risk.

This approach extends beyond dynamic triggers to static predisposing conditions, providing an
evidence-based foundation for land management and zoning policies. The work on sinkhole susceptibility
in Bilgilioğlu et al. [48] serves as a clear practical example. Instead of producing just a complex risk map,
the model’s internal logic was translated into a set of simple, testable rules for planners. For instance, the
analysis established a straightforward geological rule: sinkhole risk increases substantially within 2000 m of
a fault line. It also produced a novel hydrochemical rule, showing that risk also goes up when the seasonal
bicarbonate difference exceeds 0.68. This ability to convert the complex reasoning of an AI model into a short
list of practical, quantitative rules is what bridges the gap between an abstract prediction and an actionable,
on-the-ground risk management strategy. As Fig. 5 illustrates, advanced AI can be translated into practical,
on-the-ground risk management strategies.

Geohazards rarely stem from a single cause; instead, they typically arise from the complex interaction
of multiple factors. A significant strength of XAI is its ability to look beyond the main effects of individual
variables and quantify how they work together, whether they amplify (synergy) or reduce (antagonism) risk.
The literature reviewed here reveals several classes of these complex interactions, deepening the mechanistic
understanding of hazard processes (Fig. 6).
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Figure 5: Conceptual workflow illustrating the translation of black-box model logic into actionable knowledge. This
process is exemplified with studies that used XAI to derive quantitative thresholds for landslide early warning [78],
reservoir monitoring [79], and sinkhole risk zoning [48]

Figure 6: Synthesis of multi-factor interaction classes uncovered by XAI, exemplified by studies on static-dynamic
coupling (Wang et al. [80], Slater and Coxon [66]), cross-scale environmental interactions (Wang et al. [81], Choubin
et al. [62], Zhang et al. [82]), and the interplay between natural triggers and human activity (Ma et al. [79], Fang et al. [83],
Nam et al. [53], Iban Aksu [84])

One important class is the cross-scale interaction, where a large-scale context alters the impact of a local-
scale trigger. For instance, a study on avian influenza [81] found that high temperatures (>30○C)—normally
considered low-risk—become a significant risk amplifier when they occur within a macro-scale context of
high poultry density. Another critical category is the static-dynamic interaction, where a dynamic event
changes the importance of a static landscape feature. Research in Wang et al. [80] found that the dynamic
forces of a typhoon significantly amplified the role of static features like vegetation. This proves that the
vulnerability of a landscape is not fixed but changes based on interacting events.
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Crucially, XAI’s utility extends beyond mere model validation; it has also proven essential for accurately
quantifying complex human-environment interactions. For example, a notable investigation utilized an
interpretable-by-design model to find that the combined effect of local mining activities and rainfall was
a considerably more potent predictor of landslides in a Karst region than if those factors were assessed
individually [83]. The key takeaway is this: when a predisposing anthropogenic stressor intersects with a
natural trigger, the resultant risk of failure is powerfully elevated, often to a disproportionately high degree.

This ability to dissect a model’s logic elevates XAI from a simple interpretation tool to a computational
laboratory. It allows researchers to probe the inner workings of a trained model to generate new, data-
driven, and often non-intuitive hypotheses about the complex, conditional, and synergistic mechanisms
that drive geohazards. While these interpretive analyses deepen scientific understanding, the next step in
GeoXAI’s evolution is its integration into the modeling workflow itself—where explainability no longer
follows modeling, but actively guides it.

3.3 XAI as an Active Agent: Enhancing the Geohazard Modeling Workflow
A significant paradigm shift has occurred in how XAI is used in geohazard science. It began as a post-

hoc tool, something used simply to interpret a model after it was already built. Now, however, it is emerging
as an active component that is integrated directly into the modeling workflow itself. This new paradigm is
built around a core iterative feedback loop: Model → Explain → Refine → Final Model. In this in-the-loop
approach, an explanation is not treated as a final report card after the fact. It becomes an active blueprint
for making the model better. Researchers use these insights to guide and refine the entire modeling route—
from how the data is prepared and features are engineered, all the way to the final optimization. The systems
that come out of this process are more than just transparent; they are measurably more robust, efficient, and
physically plausible.

3.3.1 Data-Driven Refinement: XAI for Feature Engineering and Sampling Strategies
The most notable application where XAI functions as an active agent involves the data-driven optimiza-

tion of the complete modeling pipeline. This all-encompassing procedure spans every stage, from the critical
initial steps of feature selection and engineering right through to the systematic generation of the necessary
training data itself (Fig. 7).

One fundamental and practical aim of the in-the-loop methodology is the development of models that
are both simpler and more efficient, a goal typically accomplished through strategic feature selection followed
by thorough model simplification. XAI makes this possible by providing a quantitative ranking of predictor
importance. This allows researchers to create a more focused (parsimonious) model by keeping only the
most impactful features. A case study on post-fire gully erosion [85] shows this process in action. An initial,
complex model used 21 different factors. After a consensus-based SHAP analysis across four different models,
the researchers identified the eight most dominant factors. They subsequently trained a new, highly simplified
model utilizing only those eight identified predictors. The outcome was striking: the much simpler model
performed almost identically to its complex predecessor. The performance trade-off was minimal; the model’s
area under the curve (AUC) only dropped from 0.989 to 0.973. This provides powerful evidence that XAI
can be used to reduce a model’s complexity without a major sacrifice in predictive performance. This same
technique—using SHAP to distill a complex research model into a more practical tool with fewer inputs—
has also been effectively applied to ice-jam flooding [86]. Several other studies have similarly confirmed the
tangible value of XAI when applied to rigorous feature selection [61,80,92].
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Figure 7: The GeoXAI active modeling workflow, illustrating the use of XAI as an in-loop agent for model refinement.
This is exemplified by studies that leverage XAI insights for feature selection and simplification (Zhou et al. [85],
Kowshal et al. [86]), intelligent sampling and data generation (Li and Tian [87], Majid et al. [88], Xu et al. [89]), and
feature engineering and validation (Singh and Roy [90], Chu et al. [91])

More innovatively, XAI is being used to guide intelligent data generation and sampling. A groundbreak-
ing workflow developed by Li and Tian (2025) [87] demonstrates a powerful feedback loop for landslide
susceptibility: (1) an initial model is trained; (2) SHAP is used to identify a rule for landscape stability
(NDVI > 0.8); and (3) this rule is then used to filter the original random negative samples and replace them
with a more physically plausible, higher-quality set. The implementation of this specific XAI-driven sampling
methodology led to a dramatic enhancement in model performance, with the AUC soaring from 0.914 to
an impressive 0.986. The principle of using data-driven insights to guide data generation, as exemplified by
the XAI-driven workflow, is also central to other sophisticated methods such as hybrid modeling. These
frameworks frequently leverage physics-based models (such as RIVICE, RUSLE, or TRIGRS) to effectively
create large, synthetic, and physically consistent training datasets—a critical technique where observational
data are naturally scarce [86,88,89]. Furthermore, utilizing unsupervised clustering strategically to engineer
a more robust target variable out of raw historical data constitutes yet another sophisticated technique within
the realm of data refinement [93].

XAI also serves as a critical validation tool for physics-informed feature engineering. In this workflow,
domain knowledge is used to create new, powerful predictors, and XAI is then used to confirm their efficacy.
For earthquake magnitude prediction [90], new features were engineered based on seismological principles;
a subsequent SHAP analysis provided definitive proof of their value by showing that the new energy variable
had become the single most dominant predictor in the model. A similar approach was used to validate
engineered spatiotemporal features for urban flood forecasting, where SHAP confirmed the new features
contributed significantly (approx. 14%) to the model’s output [91].

The most advanced expression of this active refinement paradigm is AutoML, where the AI system
itself takes on the role of refinement. An AutoML framework built for landslide susceptibility Zheng
et al. [52] offers a clear example. It automates the entire modeling pipeline, from algorithm selection and
hyperparameter tuning to the final ensembling. The system was able to produce a state-of-the-art model
(AUC = 0.90) in only 156 s. This result showcases the immense potential of AutoML to accelerate the
development of objective, high-performance, and reproducible geohazard models.
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3.3.2 Building Confidence: XAI for Model Comparison and Validation
While continuous refinement efforts generate high-performing models, it is crucial to acknowledge that

strong metric scores don’t inherently equate to trustworthiness [94,95]. In fact, conventional validation—
which often relies solely on a single measure, such as the AUC—is frequently a poor indicator of genuine
reliability in real-world scenarios [96]. A model might achieve outstanding performance benchmarks yet
rely on spurious correlations or physically implausible reasoning. Such hidden dependencies make the
system brittle and untrustworthy, especially in mission-critical contexts [97]. The literature reviewed for this
paper strongly suggests, therefore, that XAI offers the essential framework for a much deeper, multi-faceted
validation. As vividly shown in Fig. 8, this XAI-driven methodology pushes beyond simple performance
statistics, focusing instead on establishing confidence in a model’s internal logic, its underlying robustness,
and its concrete practical utility.

Figure 8: A spectrum of XAI-driven validation methods that build model trustworthiness, exemplified by studies
on: (1) diagnostics and error analysis [56], (2) validation of physical plausibility [67], (3) establishing human-AI
consensus [98], and (4) validation against independent, real-world events [99]

One of the most valuable and readily available applications of XAI is its use in model diagnostics and
detailed error analysis. It’s vital to recognize that the actual utility of XAI goes significantly beyond simply
spotting that a model produced an error; critically, it offers researchers the unique ability to precisely pinpoint
and fully understand the specific mechanism that caused the mistake [100,101]. A premier illustration of
this diagnostic capability, for example, is the utilization of LIME for analyzing a state-of-the-art flood
segmentation model [56]. XAI essentially offers a post-mortem analysis, allowing us to diagnose exactly why
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a model fails, even when its overall quantitative metrics are otherwise excellent. Take, for instance, a flood
model that initially posted high overall accuracy scores: researchers utilized LIME heatmaps to carefully
investigate the specific regions it had misclassified. The resulting heatmaps proved highly instrumental,
revealing that the model’s core failure mode was rooted in water-shadow ambiguity. To be specific, the model
consistently mistook dark shadows for actual floodwater, a clear problem arising from their similar visual
textures. This kind of specific, diagnostic insight is critical; crucially, you can’t get it solely from an aggregate
accuracy score. Pinpointing the exact underlying reason for the failure provides a clear, direct pathway
for targeted improvements—a necessary effort that forms a fundamental step toward developing any truly
robust predictive system. This same potent diagnostic capability, notably, was instrumental in explaining the
catastrophic failure of an optical satellite model that struggled with cloudy conditions. The failure stemmed
from the fact that the system had erroneously concentrated its analysis on the clouds themselves, entirely
neglecting the underlying ground features it was initially engineered to observe [58].

Significantly, XAI moves beyond mere error diagnosis; it is, in fact, vital for validating the physical
plausibility of a model’s underlying reasoning [102]. This concept fundamentally involves using explainability
tools as a necessary sanity check, which ensures the model has, in fact, learned scientifically sensible
relationships instead of spurious ones [103]. A compelling illustration of this comes from research on a
hydrology-aware DL model: validating it with Grad-CAM clearly demonstrated that the model had, in
fact, acquired a sophisticated, adaptive reasoning strategy. Specifically, for riverine flood prediction, the
model correctly focused its attention on the river network; however, it then smartly shifted its focus to local
topography when dealing with pluvial floods occurring further away from the main channel [67]. Similarly,
SHAP analysis was effectively used to confirm that a complex forecasting model had learned a physically
sound heuristic by primarily relying on the most recent downstream data. This finding built confidence that
the model’s high accuracy was not just a result of spurious or non-physical patterns [104]. Ultimately, when
an XAI-derived explanation aligns perfectly with known physical principles, such as the confirmed impact
of a large dam on river dynamics [105], it provides powerful validation of the model’s learned representation
of the entire system.

Perhaps the most advanced form of validation is building trust through human-AI consensus. A deeper
form of validation goes beyond data and physics to the epistemological level, where a model’s logic is
compared directly to the reasoning of human domain experts. A study on bridge scour risk [98] provides a
powerful example. Confidence in the model was established not just through a high AUC, but by showing
that both the model and a group of 26 field engineers came to the same conclusion: they were in unanimous
agreement on the most important risk factor. This consensus between the AI’s feature ranking and the
experts’ collective judgment is a far more convincing validation of the model’s core logic than any statistical
metric alone. A similar approach was used to validate a landslide model. In that case, the SHAP-based
explanation for a specific event was shown to align with the findings of an independent, in-situ geotechnical
investigation [106].

XAI is a key component of more rigorous validation frameworks for both experimental and real-world
settings. The ultimate test of a model’s generalizability is its performance on an entirely independent, future
event. This gold standard approach was employed in one study by validating a wildfire damage model
on the major 2025 Southern California wildfires. This test provided exceptional confidence in the model’s
actual utility for real-world scenarios [99]. Furthermore, moving past simple accuracy metrics, XAI enables
a deep comparative validation process, allowing researchers to diagnose not merely whether one model
outperforms another, but fundamentally why. As an example, a SHAP analysis was successfully used to
reveal that a comparatively weaker support vector machine (SVM) model had learned relationships for key
variables that were both physically implausible and often contradictory, particularly when assessed against
a much more accurate RF model. This analytic step thus validated the superior physical logic and logical
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consistency inherent in the better-performing algorithm [107]. Such advanced validation strategies, fully
empowered by XAI, are essential. They are actively helping the field transition from simply developing
models that are accurate toward engineering systems that are demonstrably robust, physically plausible, and
entirely trustworthy.

3.4 The Spatiotemporal Frontier: Challenges and Opportunities in GeoXAI
Despite the significant progress in applying XAI to geohazard assessment, a critical review of the

literature points to a fundamental limitation [108]. The majority of current applications, while analyzing
geographic phenomena, use ML and interpretation methods that are inherently aspatial and static [109]. In
practice, most frameworks treat geographic data as a simple feature-based representation [75]. This approach
ignores cornerstone principles of geography, such as spatial autocorrelation (the idea that nearby things
are more related than distant things), spatial heterogeneity (the fact that relationships can change across a
landscape), and the fundamental concept of scale [110]. This aspatial assumption—that a single, global model
can capture the processes driving a hazard uniformly across a diverse landscape—is often invalid and can
lead to models that are not only less accurate but whose explanations are incomplete or even misleading [111].

Adopting this spatial viewpoint immediately brings the major challenge of spatial heterogeneity (or
non-stationarity) into focus. This describes the core phenomenon where the drivers of a geohazard, along
with their relative levels of importance, change fundamentally from one location to another [112]. Given this
fundamental challenge, a considerable portion of the research community is now deliberately transitioning
away from traditional global, one-size-fits-all modeling strategies [113]. Therefore, the overarching objective
has shifted toward creating far more sophisticated frameworks: those designed specifically to effectively
capture and provide clear explanations for these critical spatial variations within the drivers of geohaz-
ards [114]. Broadly, these emerging solutions for effectively handling spatial heterogeneity can be sorted into
three clear, distinct methodological approaches (Fig. 9). The first approach is defined as knowledge-driven
stratification: this involves researchers applying deep domain expertise to logically partition the larger study
area into smaller, more homogeneous and physically meaningful sub-regions. This necessary step occurs
prior to initiating the primary modeling process. By building and interpreting separate models for distinct
geomorphological zones or areas with different triggering mechanisms, studies have quantitatively proven
that the dominant drivers of landslides are fundamentally context-dependent and vary significantly between
these zones [64,115].

A second, more sophisticated approach employs geo-algorithmic models engineered specifically for
inherent spatial awareness. A key example is the geographical RF (GRF), a technique that operates by
iteratively fitting localized models within a moving spatial window. This localized adaptation is critical
because it allows the GRF to account for particular regional conditions, consequently yielding significantly
more realistic risk patterns. This methodology has been empirically shown to drastically outperform
conventional aspatial models that ignore geographic context [116]. In a similar vein, the recent adoption
of GNNs is noteworthy because these networks are fundamentally designed to learn from the topological
relationships established among spatial units. The result is the production of geographically much more
coherent and plausible regionalization outcomes [51]. The third, and arguably the cutting-edge, strategy is
the development of GeoXAI-native frameworks. This strategy ensures that both the core predictive model
and its accompanying interpretation methodology are developed from first principles to inherently handle
spatial data intrinsically. From this area, key innovations are emerging, including GeoMLR (which explicitly
incorporates geographic coordinates directly as modeling features) and the novel GeoShapley interpretation
method. These tools are explicitly designed to quantitatively measure and, isolate purely spatial effects from
other concurrent environmental factors [28]. A key output from these frameworks is the SHAP map, which
visualizes how a feature’s impact is distributed across space. This turns the abstract idea of feature importance
into a tangible geographic pattern, offering a unique view into the model’s spatial reasoning [117].
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Figure 9: A comparison of four methodological approaches for analyzing spatial heterogeneity in GeoXAI.
(a) Knowledge-driven Stratification, where the study area is pre-divided into homogeneous zones. (b) Geo-algorithmic
approach, using inherently spatial models like GNNs. (c) GeoXAI-Native Interpretation, using spatially explicit
explanation techniques like SHAP maps. (d) Data-driven discovery, using unsupervised clustering to automatically
identify zones of similar behavior

Beyond the spatial frontier lies the temporal frontier. The vast majority of GeoXAI studies produce static
susceptibility maps, which represent a long-term average probability but ignore the dynamic of geohazards.
However, geohazards are dynamic processes [118,119]. A growing body of work is now using XAI to dissect
these temporal dynamics (Fig. 10). This includes analyzing long-term dynamics and time-lag effects, moving
beyond immediate triggers to understand how hazards are preconditioned over time. A landmark study
using an LSTM-SHAP framework on wildfire data discovered that the risk of a summer fire was significantly
influenced not just by summer weather, but also by the climate conditions of the preceding spring, which
governed the growth of fuel [76]. Other research is tackling temporal non-stationarity by systematically
evaluating how model interpretations change when trained on different chronological datasets [90].
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Figure 10: Visualization of two distinct types of spatio-temporal dynamics analyzed with XAI. (a) Uncovering long-
term, time-lag effects, where antecedent conditions (the preconditioning phase such as spring climate) have a delayed
but critical impact on a future hazard season (summer wildfire risk) [76]. (b) Dissecting intra-event dynamics, showing
how the relative importance of different triggering factors (rainfall vs. tide) evolves during the course of a single
compound flood event [120]

Analyzing the intra-event spatio-temporal dynamics is perhaps the most sophisticated application
currently available. This methodology is unique because it specifically reveals how the drivers of a singular
hazard event evolve across both spatial extent and temporal duration. Consider, for example, the dynamics
of compound flooding: a time-dependent SHAP analysis distinctly illustrated the shifting hierarchy among
the influential drivers throughout the event. Rainfall was found to be the most critical factor during the
initial onset, yet high tides ultimately gained the dominant influence precisely when the flood reached its
maximum peak [120]. Similarly, a parallel methodological approach was successfully employed to dissect
the complex, internal kinematics of an active landslide. This specific analysis demonstrated how the relative
impact of rainfall compared to reservoir levels fluctuated, not only across distinct segments of the landslide
mass but also notably varied over the total duration of the event [63]. These pioneering investigations strongly
indicate the trajectory for future GeoXAI work: a notable movement toward formulating and employing
genuinely spatio-temporal models. Such models must be capable of capturing, and subsequently explaining,
the complete, dynamic complexity intrinsically tied to geohazard processes.

To capture this dynamic nature, recent studies have moved beyond static mappings to employ spe-
cialized spatiotemporal architectures. The review highlights the adoption of LSTM networks for capturing
temporal dependencies in flood runoff [105] and hybrid architectures like LSTM-MHA (multi-head atten-
tion) for modeling compound flood dynamics [120]. Furthermore, GNNs, such as the HydroGraphNet
employed by [70], represent a significant leap, allowing for the modeling of flood propagation on unstruc-
tured meshes. However, these architectures present unique XAI challenges. Standard SHAP implementations
often struggle to attribute importance to specific time-steps in recurrent layers. To address this, recent
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works have utilized time-dependent SHAP visualizations to track how feature influence evolves during
an event [76], revealing that drivers like antecedent soil moisture may be critical only in specific pre-
event windows.

This final synthesis, which spans from the initial thematic mappings to the dissection of complex
spatio-temporal dynamics, lays out a clear evolutionary trajectory for GeoXAI [87,121]. The function of
explainability has fundamentally transitioned [122]; it has moved beyond its foundational role as a post-
hoc tool for model transparency and has become a sophisticated framework for generating new scientific
knowledge [123]. To capture this evolution, we propose a conceptual model—the hierarchy of GeoXAI
Insights—which organizes the state-of-the-art into a four-tiered hierarchy (Fig. 11). The framework’s foun-
dation is Model Transparency (Section 3.2.1), which is essential for building the trust required for real-world
use. Building upon this, the next level is Mechanistic Insight (Section 3.2.2), where XAI is used to find
non-linear thresholds and complex interactions. These insights then enable Active Model Refinement and
Validation (Section 3.3), where XAI is integrated straightway within the modeling workflow to improve
robustness and physical plausibility. The hierarchy culminates in the frontier of scientific discovery and causal
inference (Section 3.4), where advanced GeoXAI is used not just to predict but to infer physical parameters,
but also to discover novel hazard precursors, and dissect complex causal chains. This framework serves a
dual function: it acts as a structured summary of the field’s current capabilities and as a conceptual bridge
connecting this review of the state-of-the-art to the future challenges in developing trustworthy GeoAI.
Having now established the methodological and spatio-temporal frontiers of GeoXAI, the subsequent
section will critically examine the unresolved challenges that must be addressed to ensure the reliability,
robustness, and real-world deployment of these emerging systems.

Figure 11: The GeoXAI hierarchy of insights, a conceptual model illustrating the hierarchical progression of knowledge
gained from XAI applications. The framework progresses from foundational model transparency (Matin and Prad-
han [124], Pradhan et al. [113], Choubin et al. [62]), to deriving mechanistic insight (Wen et al. [78], Ma et al. [79], Wang
et al. [81]), to enabling active model refinement (Zhou et al. [85], Li and Tian [87], Wang et al. [98]), and culminating
in the research frontier of scientific discovery and causality (Dahal et al. [68], Graciosa et al. [125], Wei et al. [105])
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4 Critical Challenges and Frontier Themes: Moving towards Trustworthy AI
The successful deployment of XAI across a varied spectrum of geohazards certainly represents a major

stride forward for the field [126]. Yet, effectively moving these systems from promising laboratory results
toward achieving truly reliable operational status fundamentally demands that the community successfully
tackle a more complex array of interwoven challenges [127]. Interestingly, the very quest for transparency
has brought a new issue into focus: even when the black-box is opened, the resulting explanations are not
consistently stable, unique, or genuine reflections of the underlying physical reality [128]. Consequently,
this section undertakes a critical review of the frontier themes poised to define the next ten years of
GeoXAI research. The primary research themes center squarely on three critical areas: effectively managing
the inherent uncertainty found in the explanations derived, successfully pushing the analysis past simple
correlation toward genuine causation, and working toward a more rigorous, deeper integration of data-
driven and physics-based models. To organize these key challenges and future-looking themes effectively,
this review brings them together into a concise, forward-looking summary. Table 4 fulfills this specific
function: it offers a systematic breakdown of the most vital research gaps identified, clearly clarifies the
fundamental importance of these gaps for the broader discipline, and subsequently proposes prioritized
trajectories for future investigation. This essential tabular framework, in turn, provides the direct basis for
the comprehensive research roadmap detailed in the final section of this manuscript.

Table 4: Synthesis of the critical research gaps, their scientific relevance, and proposed directions for the next decade of
GeoXAI research. The table consolidates evidence from 87 reviewed studies and structures the research roadmap into
thematic priorities

Research gap Problem statement and
significance Suggested research direction Priority Representative studies

Robustness and
standardization

Interpretations are often
unstable, varying with model

choice [64] or data
representation [129]. This

undermines their scientific
validity and trustworthiness.

• Develop quantitative metrics
for interpretation stability.
• Promote multi-model

consensus analysis.
• Quantify uncertainty in

explanations.

High

• Yan et al. [55]: Exemplifies
stability metrics (e.g., CV of

feature ranks).
• Pradhan et al. [129]:

Exemplifies the impact of
spatial units on interpretation.

GeoXAI-native
algorithms

The common practice of
applying aspatial XAI tools to

spatial problems is a
methodological mismatch that
can yield physically implausible

or incomplete explanations.

• Invest in inherently spatial
algorithms (e.g., GNNs).

• Develop glass-box models
(e.g., PINNs, KANs).

• Create spatially explicit
explanation techniques (e.g.,

SHAP maps).

High

• Ke et al. [28]: Exemplifies a
spatially-aware framework

(GeoMLR).
• Dahal and Lombardo [68]:

Exemplifies an
interpretable-by-design PINN.

Integration with causal
reasoning

Models excel at identifying
correlations but not causation,
limiting their scientific value

and the ability to design
effective, targeted

interventions.

• Employ XAI within
quasi-experimental designs.
• Use comparative XAI to
dissect multi-stage process

chains.
• Integrate with formal causal

inference frameworks.

High

• Wei et al. [105]: Exemplifies a
quasi-experimental

(before-and-after) design.
• Liu et al. [130]: Exemplifies
dissecting different process

stages (initiation vs.
development).

Operationalization and
governance

A significant gap persists
between developing

interpretable research models
and deploying them as robust,

ethical, and practical
decision-support tools for

end-users.

Without a clear path to
operationalization, the

practical impact of GeoXAI
research remains limited, and
ethical issues like data bias go

unaddressed.

High

• Develop MLOps frameworks
for full lifecycle management.

• Design human-AI
collaborative systems.

• Build actionable
decision-support tools and

ethical guidelines.
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4.1 The Uncertainty of Explanations: How Robust Are Interpretations?
A core, often unstated, assumption in many XAI applications is that the generated explanation repre-

sents a singular, robust truth. The reality, however, is more complex [131]. An explanation is not a direct
measurement of a natural process, but rather an artifact of a specific modeling pipeline [132]. As such, it is
susceptible to significant uncertainty stemming from the choices made during that process (Fig. 12).

Figure 12: Conceptual mind map of the challenges and solutions related to the robustness of GeoXAI explanations.
The analysis highlights key challenges such as model-dependence (Lv et al. [64], Dey, et al. [133]) and data-dependence
(Pradhan et al. [129], Hu et al. [134], Bowers et al. [135]), along with emerging solutions like multi-model consensus
(Zhou et al. [85], Nguyen Van et al. [136]), the use of stability metrics [55], and quantifying explanation uncertainty [91]

A primary source of this uncertainty comes from model dependence. This synthesis shows compelling
evidence that different black-box models, even when they are equally accurate, can learn fundamentally
different; and sometimes contradictory; mechanisms to solve the same problem. A critical investigation by
Lv et al. [64], for instance, found that while both an XGBoost and a DenseNet model accurately predicted
landslide susceptibility, their SHAP-based interpretations were at odds for key factors; XGBoost learned
a negative correlation with relief, while the DenseNet model learned a positive one. This phenomenon,
which Dey, Das and Roy [133] have termed factor behavior uncertainty, demonstrates that an explanation
is a property of the model’s learned solution, not necessarily a fixed law of the geohazard system. This is
further backed up by studies on stacking ensembles. These show that individual base models might prioritize
entirely different sets of features (e.g., topographic vs. climatic) but still contribute to a highly accurate final
prediction [137]. The implication is that refering to the interpretation from a single, arbitrarily chosen model
architecture can be a unreliable and potentially misleading approach.

A second, equally critical source of uncertainty is data-dependence. A model’s interpretation of the
world can be fundamentally altered by how geospatial data is represented, scaled, and sampled. The most
profound challenge in this context is the modifiable areal unit problem (MAUP). A foundational study
by [129] provided a stark example of this; they found that simply changing the spatial unit of analysis
from slope units to hydrological response units didn’t just change the model’s accuracy—it completely
inverted the feature importance hierarchy, swapping elevation and slope as the top-ranked landslide driver.
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The choice of spatial scale has also been shown to have a significant impact on both model performance
and interpretation stability [134]. In addition, the quality and inherent biases within the data itself can
lead to robust explanations of an inaccurate reality. A crucial cautionary study by [135] represented how
socioeconomic biases in flood insurance data led to a physically counter-intuitive explanation. It’s a critical
lesson: XAI will faithfully explain any bias a model learns from the data it is fed.

An efficient and highly effective strategy involves achieving a consensus-based interpretation by
systematically applying XAI techniques across a diverse ensemble of models. Notably, research teams
analyzing four [85] and six [136] distinct model architectures discovered a striking agreement on the most
dominant geohazard drivers. To expand upon this encouraging conceptual basis, a more structured approach
elevates the process: it involves actively combining the explanations themselves and then setting up specific
quantitative metrics intended to measure their inherent stability. As an illustration, one pioneering work [55]
put forward a novel hybrid framework specifically engineered to average the SHAP values derived from
multiple models. Crucially, they introduced the coefficient of variation (CV) of feature ranks as a metric,
proving that this ensemble explanation was substantially more stable than any single model’s interpretation
alone. The most advanced frontier, however, is the direct quantification of uncertainty in these explanations.
By applying SHAP to probabilistic models, such as Bayesian neural networks (BNNs), researchers can
generate a complete distribution of SHAP values for each feature. This capability then permits the clear
calculation and visualization of confidence intervals (CI) surrounding an interpretation [91]. This clear
evolution, which transitions from simply supplying an explanation, to rigorously ensuring its robustness,
and ultimately to directly quantifying its inherent uncertainty, is indeed a truly critical step toward building
genuinely trustworthy AI systems for comprehensive geohazard assessment.

4.2 From Correlation to Causation: The Next Frontier in Interpretability
A fundamental limitation currently affecting virtually all applications of ML within the geosciences

stems from their inherently correlational nature. Indeed, even when leveraging the transparency provided by
XAI, what is ultimately being explained remains the model’s discovered association between patterns within
the input data, rather than a definitively demonstrated causal mechanism [138]. A model may discover, for
example, that Factor A is a robust predictor of Hazard B, yet it remains completely agnostic about whether A
causes B, B causes A, or if some unobserved confounding factor C influences both. This crucial distinction
isn’t merely theoretical; it actually forms the bedrock of effective intervention. It follows, therefore, that
attempting to mitigate a factor which is only correlated and lacks a true causal link proves to be a largely futile
endeavor; however, focused intervention along a genuine causal pathway holds the authentic potential to
genuinely avert catastrophic disasters [139]. Consequently, the single greatest challenge; and, simultaneously,
the most significant opportunity; for the next decade of GeoXAI research lies in taking the difficult, yet
essential, leap from merely explaining correlations to reliably inferring causality.

While the robust formal integration of causal inference frameworks remains in a unequivocally nascent
state, this review nonetheless succeeds in highlighting key pioneering research already utilizing XAI to
achieve substantially more causally informed insights. These researchers are moving past basic feature
importance metrics to effectively disentangle the complex web of geohazard drivers. A key emerging strategy,
for instance, uses XAI to cleanly differentiate predisposing conditions where from proximate triggers when.
In short-term landslide forecasting, for example, a SHAP analysis showed that static factors like slope
correlate strongly with the long-term spatial distribution of landslides, yet it is the dynamic trigger variables,
specifically recent rainfall, that actually contain the predictive power for an imminent event [140]. This
vital separation is inherently critical, as it truly represents the first major step required to achieve a causal
understanding of how hazard initiation processes unfold.
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A more sophisticated approach involves using comparative XAI to dissect the drivers of different
stages within a causal chain. A novel framework for gully erosion [130] accomplished this by building and
interpreting two separate models: one for the potential for gully formation and another for the risk of
further development. The comparative SHAP analysis yielded a profound mechanistic insight: gully initiation
was primarily driven by climatic factors, whereas the subsequent development was governed by a more
complex interplay of topography, climate, and human activities. This demonstrates how XAI can be used to
understand the evolving causal recipe of a multi-stage geomorphic process.

Perhaps the most powerful current approach for inferring causal impact involves using XAI to analyze
quasi-experimental scenarios or natural experiments. A key study on riverine flooding [105] demonstrates
this by using a before-and-after framework to quantify the impact of a massive intervention: the construction
of the Three Gorges Dam. The comparative XAI analysis provided direct, compelling evidence that the
system’s causal structure had shifted. Before the dam’s construction, downstream flooding was primarily
driven by upstream runoff. After the dam was built, the analysis showed that the primary driver had
changed to local precipitation. This use of XAI to illuminate the mechanistic changes resulting from a major
intervention represents a significant step forward. It helps in the development of geohazard models that are
more causally robust and scientifically powerful.

These studies are the vanguard of a critical new frontier. The future of GeoXAI will not be defined by
simply building more accurate correlational models, but by integrating them with formal causal inference
frameworks (e.g., structural causal models, do-calculus). In this new paradigm, XAI is used to generate
testable causal hypotheses. The subsequent validation for these derived hypotheses would then need to be
secured through other established methods, such as physics-based modeling, highly targeted field experi-
ments, or rigorous quasi-experimental studies. This entire, crucial process marks a deliberate pivot away from
mere simple pattern recognition and toward the dedicated discovery of underlying physical mechanisms.
This necessary shift in focus is precisely what will change the primary function of GeoXAI; instead of
remaining merely a powerful engineering tool for prediction, it successfully becomes an instrument for
fundamentally advancing the scientific understanding of complex Earth systems.

4.3 Bridging Data and Physics: The Role of XAI in Hybrid and Physics-Informed Models
A fundamentally sound critique frequently directed at purely data-driven models centers on their

inherent physics-agnostic nature. It is, in fact, quite true that when these computational frameworks operate
entirely without the guidance of relevant physical constraints, even those models that attain excellent
statistical accuracy run a substantial risk of learning spurious or inherently implausible correlations [141].
Consequently, this critical deficiency severely compromises their overall reliability, especially when they are
tasked with critical operations such as extrapolation or, more broadly, with generating authentic scientific
insight [142]. Consequently, this challenge has long created a visible great divide: highly flexible, though
potentially error-prone, data-driven methods occupy one side, facing off against robust, yet frequently
computationally intractable, physics-based models on the other [143]. The leading edge for designing truly
trustworthy AI systems, especially those addressing geohazards, is now undeniably focused on successfully
closing this methodological gap [144]. This unification is typically achieved by developing and deploying
hybrid models, which are critical because they effectively merge the core strengths of both data-driven
and physics-based paradigms [145]. This reviewed literature examined here, consequently, clearly charts an
evolutionary trajectory pointing toward these more sophisticated, integrated hybrid architectures. Notably,
as Fig. 13 vividly illustrates, XAI assumes an absolutely pivotal role in this progression, supplying the
essential tools required to rigorously validate and illuminate the often-complex internal functions of these
integrated systems.
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Figure 13: The evolutionary spectrum of data-physics integration in GeoAI, illustrating the progression from shallow
hybrid models that sequentially couple physics and ML (Lai et al. [120], Xu et al. [89], Kowshal et al. [86]), to Deep
Hybrid models with architectural integration of physical laws (Taghizadeh et al. [70], Dahal and Lombardo [68],
Vogiatzoglou et al. [69]), and culminating in inherently interpretable glass-box systems (Zhang et al. [146], Fang
et al. [83], Taghizadeh et al. [70])

The most established approach is shallow or sequential hybridization, where physics-based and ML
models operate as distinct but connected components in a workflow. A dominant strategy is using physics
to inform data generation, where a trusted, albeit computationally expensive, mechanistic model is used
to create a large, physically plausible synthetic dataset. This dataset then serves to train a highly efficient
ML surrogate model suitable for real-time applications. For the specific challenge of compound flooding, a
hydrodynamic model (HEC-RAS) was utilized to train a DL surrogate; this model proved to be significantly
faster—216 times faster, in fact. Furthermore, the crucial validation step involved SHAP analysis, which was
instrumental in confirming that the surrogate had genuinely and successfully learned the correct underlying
physical dynamics [120]. This approach has also been used to generate high-quality training data for landslide
susceptibility by first identifying physically unstable slopes with a slope stability model (TRIGRS) [89].

A more profound integration is found in deep hybridization, where physical principles are embedded
directly into the architecture of a DL model. This is the domain of Physics-informed neural networks
(PINNs). In this setup, the model’s loss function is importantly augmented by including a term that
directly penalizes any violation of the system’s known governing equations; this could be, for example, the
foundational laws of mass or energy conservation. This vital mechanism forces the network to find solutions
that not only line up statistically with available observational data, but also inherently adhere to fundamental
physics. Crucially, evidence consistently demonstrates that this approach notably lowers prediction errors
in especially critical applications, such as in flood forecasting [70]. Furthermore, a genuinely transformative
use of this framework appears when solving inverse problems: here, researchers have cleverly designed
PINNs to infer previously unobserved, spatially-varying physical parameters—for instance, wildfire heat
transfer coefficients [69] or certain geotechnical properties like the soil friction angle —simply by leveraging
more accessible proxy environmental data [147]. Significantly, this successfully shifts the role of AI; it
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moves the system beyond being a mere passive predictor, establishing it instead as an active engine for
scientific discovery.

The development of inherently interpretable, or glass-box models, clearly represents the logical culmina-
tion of this established evolutionary trend. In these advanced architectures, high predictive performance and
essential transparency are not separated; rather, they are co-designed from the outset, entirely avoiding the
pitfalls of clumsy or inefficient post-hoc retrofitting. This critical difference highlights a needed, fundamental
shift: instead of just applying an explanatory tool like SHAP to an inherently opaque black-box, the next
wave of models should be thoughtfully built using components that are intelligible by design. Several truly
innovative architectures already demonstrate the viability of this movement. Several truly innovative archi-
tectures already illustrate this movement’s direction. For instance, some models incorporate custom gated
modules where the weights derived during the training process inherently function as the explanation [146].
Furthermore, important frameworks like GAMI-net are specifically built to isolate main effects from their
corresponding interaction effects cleanly [83]. The emerging Kolmogorov-Arnold networks (KANs) likely
represent the most promising development in this area. This methodology is potentially groundbreaking
precisely because it employs activation functions that are both highly visualizable and, more importantly,
remarkably learnable splines [70]. Importantly, these interpretable-by-design frameworks are frequently
shown to reach state-of-the-art performance, effectively offering a genuine fusion of data-driven modeling
power and physical domain understanding. Notably, they resolve the historical trade-off between accuracy
and interpretability, clearly signaling a future where the most powerful geohazard models are also, by their
very nature, the most transparent.

4.4 The Computational Tax of Interpretability
A critical, yet often underreported, barrier to the operational deployment of GeoXAI is the computa-

tional cost associated with generating explanations, particularly for high-dimensional geospatial datasets.
This synthesis reveals a stark trade-off between model complexity and computational efficiency. While
lightweight models like XGBoost can be trained in under a minute (e.g., 57.42 s in [148]), complex
ensemble architectures coupled with SHAP calculations can increase processing time by nearly 600%
(to 385.47 s). Similarly, spatially-explicit models impose heavy computational loads; [116] reported that
a GRF required approximately 24 h for training due to the calculation of local estimators, compared
to minutes for global models. Furthermore, physics-informed architectures (PINNs), while transparent,
demand significant resources, with training times exceeding 11 h for wildfire spread parameterization [69].
Therefore, future research must balance the depth of explanation with the latency requirements of real-time
early warning systems.

Fig. 14 synthesizes the evolution of GeoXAI into a conceptual model—the pyramid of GeoXAI Insights.
This framework illustrates the progression from a simple tool for model transparency to a sophisticated
method for scientific discovery, organizing the state-of-the-art into a four-tiered hierarchy. Building on the
frontier challenges identified above, the following roadmap translates these conceptual issues into actionable
research priorities and strategic directions for the coming decade of GeoXAI development.
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Figure 14: A research roadmap for trustworthy GeoAI, structured around four foundational pillars exemplified by
studies on robustness and standardization (Yan et al. [55], Zhou et al. [85], Chu et al. [91]), the development of GeoXAI-
native algorithms (Li et al. [51], Dahal and Lombardo [68], Taghizadeh et al. [70]), the integration with causal reasoning
(Wei et al. [105], Liu et al. [130]), and the challenges of operationalization and governance (Singh and Roy [90], Wang
et al. [98], Wen et al. [78])

5 A Research Roadmap for the Next Decade
Although the incorporation of XAI has unquestionably yielded major advancements in geohazard

assessment, this systematic synthesis brings to light several critical research gaps that must be immediately
addressed to realize the full potential of this rapidly emerging domain. These pressing challenges aren’t
specific to one step; rather, they affect the entire modeling pipeline, ranging from the fundamental data
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utilized to fuel these models to the theoretical basis of the interpretations, and, crucially, their eventual,
reliable operational deployment.

5.1 Data-Centric Challenges and Future Directions
Inventory quality and bias: The adage garbage in, garbage out is amplified in XAI; an explanation of

a model trained on biased data is merely a transparent reflection of that bias. Geohazard inventories are
often incomplete, spatially biased towards accessible areas, and lack consistent quality. Future research must
move beyond simply using available data to actively developing frameworks for quantifying and propagating
inventory uncertainty through the modeling pipeline. Methodologies like physics-informed data gener-
ation, data-driven sampling based on preliminary XAI insights, and the creation of community-driven,
standardized benchmark datasets are critical for building models that learn a more faithful representation
of reality.

Spatio-temporal data representation: Most current studies still rasterize complex geohazards into simple
point or pixel representations, losing valuable information about the hazard’s geometry, volume, and
temporal evolution. The next generation of GeoXAI models must be built to handle richer data structures.
This includes leveraging dynamic, multi-modal remote sensing time-series; provided that their fidelity is
rigorously benchmarked against topographic biases [149]; integrating sensor network data, and utilizing
graph-based representations that capture the topological relationships between spatial units, thus providing
a more holistic input for both prediction and explanation.

Operationalizing models in data-scarce regions: A critical practical constraint in geohazard assessment
is data scarcity, particularly for rare events like large-scale landslides or in ungauged catchments. This
review demonstrates that XAI serves as a crucial validation layer when training data is limited. For
instance, [50] successfully developed a rockbolt failure model using only 160 instances; here, SHAP was not
just an explanation tool but a safety mechanism, confirming that the model did not overfit to noise but
learned physically valid rules (e.g., roadway length influence). Similarly, in data-scarce urban flood settings,
integrating active learning strategies with XAI has demonstrated the potential to maintain high segmentation
accuracy with significantly fewer labeled samples by identifying and prioritizing ambiguous regions for
labeling. Thus, XAI acts as a bridge, allowing researchers to deploy models in data-poor regions with a level
of confidence that black-box metrics alone cannot provide.

5.2 Methodological and Interpretability Frontiers
The need for GeoXAI-native algorithms: The prevailing, dominant approach—applying ML and XAI

algorithms that are fundamentally aspatial to problems inherently structured in space—represents a
significant methodological compromise. A substantial research gap therefore emerges: the urgent need
for GeoXAI-native algorithms. Within these necessary future architectures, core geographic principles—
specifically spatial heterogeneity, scale, and autocorrelation—must be integrated directly as core architectural
components, rather than being treated simply as subsequent adjustments or afterthoughts. The pioneering
successes already demonstrated by intrinsically spatial models, such as GNNs and Geographically Weighted
(GW) models, already offer a compelling, clear direction. When these are coupled with the strong potential of
glass-box architectures like PINNs and the new KANs, the path forward becomes unambiguous. The future
of GeoXAI absolutely lies in deliberately building models that are interpretable by design and inherently
structured to effectively handle the unique, complex challenges posed by spatio-temporal geohazard data.

Technical pathways for interpretable spatial DL: Moving beyond general recommendations, this review
identifies specific architectural strategies to reconcile the trade-off between the complexity of spatial models
(like GNNs) and interpretability. The first pathway is intrinsic integration; rather than applying post-hoc
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tools to opaque GNN embeddings, researchers can embed interpretable layers directly into the network.
A prime example is the integration of KANs within a GNN architecture, as demonstrated by [70], where
learnable spline activation functions allow for the direct visualization of non-linear transformations at each
graph node. The second pathway is spatially-adapted attribution; modifying standard XAI algorithms to
explicitly treat geographic location as a variable. Study [28] introduced GeoShapley, which decomposes the
standard SHAP value into intrinsic feature effects and location effects, thereby preventing the model’s spatial
biases from being conflated with physical feature importance. Future work should prioritize these hybrid
architectures over the naive application of standard SHAP to spatial graph models.

The science of interpretation robustness: As this review has shown, explanations can be fragile. A critical
frontier is the development of a formal science of interpretation that moves beyond generating a single
explanation to assess its reliability. Future work must standardize the use of multi-model consensus analysis,
create formal metrics to quantify interpretation stability across data perturbations, and develop methods to
calculate and visualize the CI around feature attributions, for instance, through the application of XAI to
probabilistic Bayesian models.

Defining quantitative metrics for trustworthiness: To transition trust from a subjective concept to an
engineering requirement, future GeoXAI frameworks must adopt standardized quantitative metrics. This
review identifies three promising candidates for community adoption:

1. Stability metrics: The CV of feature importance rankings across cross-validation folds, as demonstrated
by [55], provides a scalar measure of explanation robustness against data perturbations.

2. Uncertainty quantification: The calculation of CI around SHAP values using probabilistic architectures
(e.g., BNNs), as shown by [91], allows decision-makers to distinguish between certain and ambiguous
risk drivers.

3. Consistency indices: The consistency index (C) proposed by [28], which quantifies the alignment
between feature attribution and physical monitoring data.

5.3 From Explanation to Causation and Operation
Bridging correlation and causation: The most significant theoretical gap is that current models are

primarily correlational. For these models to achieve genuine value for intervention and policy formulation,
they must furnish clear insights into the underlying causal mechanisms. Consequently, a key, non-negotiable
component of the future research agenda must involve formally integrating GeoXAI with established
causal inference frameworks. This crucial integration will empower the community to effectively move
beyond simple predictive modeling. Ultimately, this paradigm shift will allow us to use models reliably
for several advanced purposes: rigorously testing causal hypotheses, systematically evaluating the potential
impact of different mitigation strategies, and directly addressing crucial counterfactual questions concerning
geohazard processes.

The last mile problem; operationalization and governance: A gap persists between producing an inter-
pretable research model and deploying a trusted operational tool. Future research must focus on the full
lifecycle of GeoAI systems, including MLOps frameworks for continuous monitoring and maintenance.
Furthermore, a critical agenda is the development of human-AI collaborative systems that effectively
integrate data-driven explanations with expert knowledge. This must be done alongside the creation of
ethical frameworks to govern their use in high-stakes decision-making, ensuring that the transparency
provided by XAI leads to fair, equitable, and effective risk management. Taken together, these data-centric,
methodological, and operational priorities set the stage for a more transparent and causally informed
generation of geohazard models, as summarized in the concluding section below.
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6 Limitations and Future Directions
While this review follows a rigorous PRISMA workflow, several limitations should be acknowledged

to contextualize the findings. First, the search strategy relied primarily on the WoS core collection.
Although WoS is a premier database for high-impact natural science research, this choice may have
excluded engineering-oriented studies indexed exclusively in Scopus, IEEE Xplore, or relevant grey literature.
Second, restricting the search to English-language publications may overlook important regional GeoXAI
contributions, particularly from non-English-speaking countries with high geohazard exposure. Third, given
the fast-evolving nature of AI, the review reflects a specific snapshot of the XAI boom (2021–2025), and
newer methodological advances may not yet be represented. Finally, publication bias—where journals tend
to publish positive or methodologically successful outcomes—could influence the apparent effectiveness of
XAI methods, as unsuccessful or inconclusive applications are rarely reported.

7 Conclusion
This systematic review charted the emergence and rapid maturation of XAI within geohazard science,

a new paradigm appropriately designated here as GeoXAI. The collective synthesis of recent literature
decisively reveals a fundamental and necessary shift in the field: researchers are now moving deliberately
away from opaque black-box predictions and toward the development of models that are transparent,
scientifically insightful, and ultimately trustworthy. A key contribution of GeoXAI lies in its inherent
capacity to transform any predictive model into a computational laboratory, thereby facilitating a detailed
dissection of underlying hazard mechanisms. This capability encompasses identifying critical, actionable
thresholds for early warning systems, uncovering complex, synergistic interactions among conditioning
factors, and providing a multi-faceted validation framework that, through rigorous error diagnosis, necessary
checks for physical plausibility, and direct comparison with established human expertise, serves to bolster
confidence. The shift from global to local diagnoses has represented a crucial step forward, making these
powerful insights tangible for on-the-ground decision-makers. In parallel, the deliberate integration of these
methodologies with physics-based principles is giving rise to a new generation of models that are both
demonstrably more accurate and scientifically sound. Looking to the future, the continued advancement of
this burgeoning frontier depends on a focused and strategic research effort. Future work should prioritize
establishing new community standards for both model robustness and reproducibility—an imperative that
includes the routine implementation of multi-model consensus analysis and the mandatory quantification
of interpretation uncertainty. Alongside this, researchers must strategically invest in creating algorithms
inherently designed for the unique properties of spatio-temporal data (GeoXAI-native), which marks a
vital evolution from mere post-hoc explanation toward true glass-box transparency. The field must also
deliberately shift its focus beyond correlational analysis and toward causal inference, an advancement that
will empower models to not only predict a phenomenon but also to thoroughly explain the fundamental why
behind it. Finally, focused attention on the critical last mile of operational deployment is essential, necessi-
tating the creation of robust ethical governance frameworks and integrated human-AI collaborative systems
to ensure these powerful technologies are deployed both effectively and equitably. The XAI frameworks
synthesized in this review serve as key drivers of this progress by strengthening the physical interpretability
of complex models and providing a transparent lens into their internal logic. By focusing on these pillars, the
GeoXAI community can realize the full potential of this technology and foster a new generation of geohazard
science that is more predictive, interpretable, and societally relevant.
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